
Ideal-SVP is Hard for Small-Norm Uniform

Prime Ideals

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski

INRIA Lyon, ENS de Lyon

Contributions

• New reduction: P−1-ideal-SVP to P-ideal-SVP.

• Application: new distribution of NTRU instances with difficulty

based on wc-ideal-SVP.

To appear in the proceedings of TCC 2023. Available on:

https://eprint.iacr.org/2023/1370

1/29

https://eprint.iacr.org/2023/1370

Contributions

• New reduction: P−1-ideal-SVP to P-ideal-SVP.

• Application: new distribution of NTRU instances with difficulty

based on wc-ideal-SVP.

To appear in the proceedings of TCC 2023. Available on:

https://eprint.iacr.org/2023/1370

1/29

https://eprint.iacr.org/2023/1370

Definitions

Lattices

A 2-dimensional lattice

Definition

For b1, . . . ,bn ∈ Zn linearly independent, the lattice spanned by the

basis b1, . . . ,bn is L =
∑

i Z · bi ⊂ Rn.

It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in L given the (bi)i is hard in general.

2/29

Lattice-based cryptography

0

1

Lattice cryptography (toy example). Bpk and Bsk are the basis of a lattice L.

Secure as long as it is hard to find Bsk given Bpk.

This problem is the Shortest-Vector-Problem (SVP).

Note: L must be chosen at random.

3/29

Lattice-based cryptography

0

1

Lattice cryptography (toy example). Bpk and Bsk are the basis of a lattice L.

Secure as long as it is hard to find Bsk given Bpk.

This problem is the Shortest-Vector-Problem (SVP).

Note: L must be chosen at random.

3/29

Lattice-based cryptography

0

1

Lattice cryptography (toy example). Bpk and Bsk are the basis of a lattice L.

Secure as long as it is hard to find Bsk given Bpk.

This problem is the Shortest-Vector-Problem (SVP).

Note: L must be chosen at random.

3/29

Number fields and Ideals

We use the field K = Q[X]/(X n + 1), OK = Z[X]/(X n + 1) for n = 2r .

(K a number field, OK its ring of integers).

The size of an element a ∈ K is ∥a∥ =
(∑

i |ai |
2
)1/2

.

The size of an element is the ℓ2-norm of its Minkowski embedding.

Definition (Ideal)

A set a ⊆ K is an ideal if it is discrete, stable by addition and by

multiplication by any element of OK . It is then a lattice.

Norm of an ideal: N (I) = Vol(I)/
√
∆K ∈ Z.

4/29

Number fields and Ideals

We use the field K = Q[X]/(X n + 1), OK = Z[X]/(X n + 1) for n = 2r .

(K a number field, OK its ring of integers).

The size of an element a ∈ K is ∥a∥ =
(∑

i |ai |
2
)1/2

.

The size of an element is the ℓ2-norm of its Minkowski embedding.

Definition (Ideal)

A set a ⊆ K is an ideal if it is discrete, stable by addition and by

multiplication by any element of OK . It is then a lattice.

Norm of an ideal: N (I) = Vol(I)/
√
∆K ∈ Z.

4/29

Ideal inverse and factorization

Let a, b ideals of K , and a ∈ K .

Principal ideal

(a) = {x · a, x ∈ OK}.

Multiplication and inverse

a · b = {
∑

i ai · bi} , a−1 = {x ∈ K , x · a ⊆ OK}.
We have that a · a−1 = OK .

Factorization

There exists a set of prime ideals P such that any a ⊂ K can be written

in a unique way

a =
∏
p∈P

pνp(a).

5/29

The problem ideal-HSVP

Definition (ideal-HSVPγ)

Given an ideal a ⊆ K , find x ∈ a \ {0} with ∥x∥ ≤ γ · Vol(a)1/d .

Ideal lattices are not typical lattices. E.g., they verify λ1(I) ≈ λd(I).

• There are specifics attacks on ideal lattices1.

• Ideals are the simplest examples of module lattices (they are rank-1

modules), used in real world applications (KYBER, DILITHIUM).

• ideal-HSVP is related to other structured lattice problems

(Module-SVP, NTRU, RingLWE).

1[CDPR16, CDW17, PHS19]

6/29

The problem ideal-HSVP

Definition (ideal-HSVPγ)

Given an ideal a ⊆ K , find x ∈ a \ {0} with ∥x∥ ≤ γ · Vol(a)1/d .

Ideal lattices are not typical lattices. E.g., they verify λ1(I) ≈ λd(I).

• There are specifics attacks on ideal lattices1.

• Ideals are the simplest examples of module lattices (they are rank-1

modules), used in real world applications (KYBER, DILITHIUM).

• ideal-HSVP is related to other structured lattice problems

(Module-SVP, NTRU, RingLWE).

1[CDPR16, CDW17, PHS19]

6/29

Why small ideal lattices?

Typical lattice basis: O(d2) integers vs Ideal lattice basis: O(d) integers.2

Bitsize of a typical element of a is log(N (a)).

→ We want N (a) ≈ poly(d)d in order to have small keys.

Also: faster algorithms.

2Images from [Qua14]

7/29

Why small ideal lattices?

Typical lattice basis: O(d2) integers vs Ideal lattice basis: O(d) integers.2

Bitsize of a typical element of a is log(N (a)).

→ We want N (a) ≈ poly(d)d in order to have small keys.

Also: faster algorithms.

2Images from [Qua14]

7/29

Why small ideal lattices?

Typical lattice basis: O(d2) integers vs Ideal lattice basis: O(d) integers.2

Bitsize of a typical element of a is log(N (a)).

→ We want N (a) ≈ poly(d)d in order to have small keys.

Also: faster algorithms.

2Images from [Qua14]

7/29

Worst-case to Average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for I ← D with non-negligible probability.

Average-case: ”Find the secret key given a random public key”.

Two reductions here:

• Worst-case to average case.

• Average case for D1 to Average-case for D2.

8/29

Worst-case to Average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for I ← D with non-negligible probability.

Average-case: ”Find the secret key given a random public key”.

Two reductions here:

• Worst-case to average case.

• Average case for D1 to Average-case for D2.

8/29

Prior Works on ideal-HSVP

Worst-case

Ideal HSVP

Ideal HSVP for inverses

of uniform small primes

Ideal HSVP for uniform

ideals of large volume

Ideal of

volume qd
NTRU instance

with module ≈ q2

[Gen09]

[BDPW19]

[PS21]

And also: ideal-HSVP reduces to RLWE

9/29

Description of our work and motivation

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.

Idea: W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that P−1-ideal-HSVP reduces to P-ideal-HSVP.
Two reasons

1. [Gen09]: ideal-HSVP (for all ideals) reduces to P−1-ideal-HSVP,

we complete this reduction.

2. The NTRU reduction from [PS21] works only for integral ideals.

In fact we prove a more general reduction:

ideal-HSVP(W−1) reduces to ideal-HSVP(W) + ideal-HSVP(IA,B)

10/29

Description of our work and motivation

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.

Idea: W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that P−1-ideal-HSVP reduces to P-ideal-HSVP.

Two reasons

1. [Gen09]: ideal-HSVP (for all ideals) reduces to P−1-ideal-HSVP,

we complete this reduction.

2. The NTRU reduction from [PS21] works only for integral ideals.

In fact we prove a more general reduction:

ideal-HSVP(W−1) reduces to ideal-HSVP(W) + ideal-HSVP(IA,B)

10/29

Prior work: Gentry’s reduction

Rounding ideals

Two types of ideals: integral a ⊆ OK and fractional : I ⊆ K .

(And replete: I = x · a ⊂ KR with x ∈ K×
R)

Note

If a is integral, a−1 is fractional.

How to round an ideal

Take x ← I−1 with x ∼ λ · (1, . . . , 1)T with λ large, then x · I ⊆ OK and:

s = ideal-HSVP(I)
∼⇐⇒ x · s = ideal-HSVP(x · I).

Rounding allows to randomize our ideals (sample random x).

x ∈ I−1 is small ⇒ x · I has small volume.

In [BDPW20], rounding is done with large elements (due to LLL).

11/29

Rounding ideals

Two types of ideals: integral a ⊆ OK and fractional : I ⊆ K .

(And replete: I = x · a ⊂ KR with x ∈ K×
R)

Note

If a is integral, a−1 is fractional.

How to round an ideal

Take x ← I−1 with x ∼ λ · (1, . . . , 1)T with λ large, then x · I ⊆ OK and:

s = ideal-HSVP(I)
∼⇐⇒ x · s = ideal-HSVP(x · I).

Rounding allows to randomize our ideals (sample random x).

x ∈ I−1 is small ⇒ x · I has small volume.

In [BDPW20], rounding is done with large elements (due to LLL).

11/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Sampling ideals

How would you sample a big prime number in [A,B]?

You are not allowed to pre-compute the set of primes numbers in [A,B]!

Idea 1: rejection sampling

Sample N uniform in [A,B] until it is prime, then output it.

→ Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A,B]. Factor N =
∏

peii and output a random

pi ∈ [A,B].

→ Need rejection sampling: 2 more frequent than 7919.

→ It really looks like what we did in Gentry’s reduction.

We are going to use Idea 2 in order to sample prime ideals with a

trapdoor.

13/29

How would you sample a big prime number in [A,B]?

You are not allowed to pre-compute the set of primes numbers in [A,B]!

Idea 1: rejection sampling

Sample N uniform in [A,B] until it is prime, then output it.

→ Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A,B]. Factor N =
∏

peii and output a random

pi ∈ [A,B].

→ Need rejection sampling: 2 more frequent than 7919.

→ It really looks like what we did in Gentry’s reduction.

We are going to use Idea 2 in order to sample prime ideals with a

trapdoor.

13/29

How would you sample a big prime number in [A,B]?

You are not allowed to pre-compute the set of primes numbers in [A,B]!

Idea 1: rejection sampling

Sample N uniform in [A,B] until it is prime, then output it.

→ Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A,B]. Factor N =
∏

peii and output a random

pi ∈ [A,B].

→ Need rejection sampling: 2 more frequent than 7919.

→ It really looks like what we did in Gentry’s reduction.

We are going to use Idea 2 in order to sample prime ideals with a

trapdoor.

13/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK)

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.

14/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I)

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).

15/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1 and y = x−1 · sI .

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1 and y = x−1 · sI .

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d and sI = exp(ζ) · u · sq/N (q)1/d ∈ I .

4: Sample x ←↩ U (B∞(r)
⋂
I).

5: Return b = x · I−1 and y = x−1 · sI .

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29

Some details on ArakelovSampling

Figure 2: B∞(r)

1. We pick I ≈ q/N (q)1/d .

2. We sample x ←↩ U (B∞(r)
⋂

I).

3. We return b = x · I−1.

Necessary for uniform b

1. |B∞(r)
⋂
I | do not depend on I (too much).

2. Vol(Log(B∞(r))
⋂
{
∑

xi = t}) is ≈ constant for t ∈ [A,B].

Drawback

There are (a non-negligible proportion of) x ∈ B∞(r) with
∥∥x−1

∥∥ very

large.

17/29

Some details on ArakelovSampling

Figure 2: B∞(r)

1. We pick I ≈ q/N (q)1/d .

2. We sample x ←↩ U (B∞(r)
⋂

I).

3. We return b = x · I−1.

Necessary for uniform b

1. |B∞(r)
⋂
I | do not depend on I (too much).

2. Vol(Log(B∞(r))
⋂
{
∑

xi = t}) is ≈ constant for t ∈ [A,B].

Drawback

There are (a non-negligible proportion of) x ∈ B∞(r) with
∥∥x−1

∥∥ very

large.

17/29

Main contribution:

P−1-ideal-SVP to P-ideal-SVP

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.

18/29

What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29

What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29

What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29

What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29

Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log(x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}

20/29

Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log(x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}

20/29

Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log(x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}

20/29

Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log(x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}

20/29

Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log(x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}

20/29

Reminder: SampleIdealBA,B

The algorithm SampleIdealBA,B
:

1. Takes as input a ⊆ OK and sa ∈ a small.

2. Output b ⊆ OK uniform and y ∈ b−1 · a−1 small.

Now if we get in sb ∈ b small, we have that sb · y is small and

sb · y ∈ b · b−1 · a−1 = a−1

ideal-HSVP(a) + ideal-HSVP(b)
SampleIdealBA,B−−−−−−−−−−→ ideal-HSVP(a−1)

21/29

Reminder: SampleIdealBA,B

The algorithm SampleIdealBA,B
:

1. Takes as input a ⊆ OK and sa ∈ a small.

2. Output b ⊆ OK uniform and y ∈ b−1 · a−1 small.

Now if we get in sb ∈ b small, we have that sb · y is small and

sb · y ∈ b · b−1 · a−1 = a−1

ideal-HSVP(a) + ideal-HSVP(b)
SampleIdealBA,B−−−−−−−−−−→ ideal-HSVP(a−1)

21/29

Reminder: SampleIdealBA,B

The algorithm SampleIdealBA,B
:

1. Takes as input a ⊆ OK and sa ∈ a small.

2. Output b ⊆ OK uniform and y ∈ b−1 · a−1 small.

Now if we get in sb ∈ b small, we have that sb · y is small and

sb · y ∈ b · b−1 · a−1 = a−1

ideal-HSVP(a) + ideal-HSVP(b)
SampleIdealBA,B−−−−−−−−−−→ ideal-HSVP(a−1)

21/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK)−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.

22/29

A note on rejection Sampling

We fail if b is not prime: we have to do rejection sampling.

The expected number of rejection is

|IA,B |
|PA,B |

≈ ρK = Ress=1 ζK (s).

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A,B.

23/29

A note on rejection Sampling

We fail if b is not prime: we have to do rejection sampling.

The expected number of rejection is

|IA,B |
|PA,B |

≈ ρK = Ress=1 ζK (s).

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A,B.

23/29

Application to NTRU

NTRU cryptosystem

Proposed first in [HPS96]. In NIST’s post-quantum standardization

process: NTRU and NTRUPrime.

Let q be an integer.

Definition (NTRUq)

Let f , g ∈ OK with coefficients ≪ √q and f invertible mod q.

Given h ∈ OK such that f · h = g mod q, find a small multiple of (f , g).

Advantages:

• Small keys.

• Fast encryption/decryption (much faster than RSA).

• Old.

[HPS96]: J. Hoffstein, J. Pipher, J. Silverman. ANTS 1998.

24/29

NTRU instances from ideal-HSVP [PS21]

Karp reduction from [PS21].

Ideal SVP

a = (z)
⋂
OK .

Vol(a) = V .

SVP(a) = s

NTRU

q ≈ V 2/d .

h = ⌊q/z⌉.
(g , f) = (s, s · {q/z})

Distribution of NTRU instances (DNTRU): sample p uniform small

prime and apply the reduction.

Consequence: worst-case based distribution for NTRU

NTRU for DNTRU ≥ P-ideal-SVP ≥ wc-ideal-SVP.

25/29

NTRU instances from ideal-HSVP [PS21]

Karp reduction from [PS21].

Ideal SVP

a = (z)
⋂
OK .

Vol(a) = V .

SVP(a) = s

NTRU

q ≈ V 2/d .

h = ⌊q/z⌉.
(g , f) = (s, s · {q/z})

Distribution of NTRU instances (DNTRU): sample p uniform small

prime and apply the reduction.

Consequence: worst-case based distribution for NTRU

NTRU for DNTRU ≥ P-ideal-SVP ≥ wc-ideal-SVP.

25/29

Wrapping up

Contributions and open problems

Contributions:

• We show that solving ideal-HSVP on average over inverse of primes

is as hard as solving ideal-HSVP on average over primes.

• The new reduction gives an NTRU distribution based on a

worst-case problem for polynomial modulus.

Open problems:

• Can we have such reduction without factoring?

• Can we get rid of the cost in ρK?

• Can we have more precise approximates for |IA,B |/|PA,B |?

26/29

Contributions and open problems

Contributions:

• We show that solving ideal-HSVP on average over inverse of primes

is as hard as solving ideal-HSVP on average over primes.

• The new reduction gives an NTRU distribution based on a

worst-case problem for polynomial modulus.

Open problems:

• Can we have such reduction without factoring?

• Can we get rid of the cost in ρK?

• Can we have more precise approximates for |IA,B |/|PA,B |?

26/29

Thank you for your attention

Any question?

27/29

References i

K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski, Random

self-reducibility of Ideal-SVP via Arakelov random walks, CRYPTO,

2020.

K. Boudgoust, E. Gachon, and A. Pellet-Mary, Some easy instances

of Ideal-SVP and implications on the partial Vandermonde knapsack

problem, CRYPTO, 2022.

K. de Boer, Random walks on arakelov class groups., Ph.D. thesis,

Leiden University, 2022, Available on request from the author.

R. Cramer, L. Ducas, C. Peikert, and O. Regev, Recovering short

generators of principal ideals in cyclotomic rings, EUROCRYPT

2016, 2016.

R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class

relations and application to Ideal-SVP, EUROCRYPT, 2017.

28/29

References ii

C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis,

Stanford University, 2009.

A. Pellet-Mary, G. Hanrot, and D. Stehlé, Approx-SVP in ideal

lattices with pre-processing, EUROCRYPT, 2019.

A. Pellet-Mary and D. Stehlé, On the hardness of the NTRU

problem, ASIACRYPT, 2021.

Quartl, Matrix pattern qtl3, 2014, File: Matrix pattern

qtl3.svg.

29/29

	Definitions
	Prior work: Gentry's reduction
	Sampling ideals
	Main contribution: P-1-ideal-SVP to P-ideal-SVP
	Application to NTRU
	Wrapping up

