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Definitions



Lattices

A 2-dimensional lattice

Definition

For b1, . . . ,bn ∈ Zn linearly independent, the lattice spanned by the

basis b1, . . . ,bn is L =
∑

i Z · bi ⊂ Rn.

It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in L given the (bi )i is hard in general.
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Lattice-based cryptography

0

1

Lattice cryptography (toy example). Bpk and Bsk are the basis of a lattice L.

Secure as long as it is hard to find Bsk given Bpk.

This problem is the Shortest-Vector-Problem (SVP).

Note: L must be chosen at random.
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Number fields and Ideals

We use the field K = Q[X ]/(X n + 1), OK = Z[X ]/(X n + 1) for n = 2r .

(K a number field, OK its ring of integers).

The size of an element a ∈ K is ∥a∥ =
(∑

i |ai |
2
)1/2

.

The size of an element is the ℓ2-norm of its Minkowski embedding.

Definition (Ideal)

A set a ⊆ K is an ideal if it is discrete, stable by addition and by

multiplication by any element of OK . It is then a lattice.

Norm of an ideal: N (I ) = Vol(I )/
√
∆K ∈ Z.
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Ideal inverse and factorization

Let a, b ideals of K , and a ∈ K .

Principal ideal

(a) = {x · a, x ∈ OK}.

Multiplication and inverse

a · b = {
∑

i ai · bi} , a−1 = {x ∈ K , x · a ⊆ OK}.
We have that a · a−1 = OK .

Factorization

There exists a set of prime ideals P such that any a ⊂ K can be written

in a unique way

a =
∏
p∈P

pνp(a).
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The problem ideal-HSVP

Definition (ideal-HSVPγ)

Given an ideal a ⊆ K , find x ∈ a \ {0} with ∥x∥ ≤ γ · Vol(a)1/d .

Ideal lattices are not typical lattices. E.g., they verify λ1(I ) ≈ λd(I ).

• There are specifics attacks on ideal lattices1.

• Ideals are the simplest examples of module lattices (they are rank-1

modules), used in real world applications (KYBER, DILITHIUM).

• ideal-HSVP is related to other structured lattice problems

(Module-SVP, NTRU, RingLWE).

1[CDPR16, CDW17, PHS19]
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Why small ideal lattices?

Typical lattice basis: O(d2) integers vs Ideal lattice basis: O(d) integers.2

Bitsize of a typical element of a is log(N (a)).

→ We want N (a) ≈ poly(d)d in order to have small keys.

Also: faster algorithms.

2Images from [Qua14]
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Worst-case to Average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for I ← D with non-negligible probability.

Average-case: ”Find the secret key given a random public key”.

Two reductions here:

• Worst-case to average case.

• Average case for D1 to Average-case for D2.
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Prior Works on ideal-HSVP

Worst-case

Ideal HSVP

Ideal HSVP for inverses

of uniform small primes

Ideal HSVP for uniform

ideals of large volume

Ideal of

volume qd
NTRU instance

with module ≈ q2

[Gen09]

[BDPW19]

[PS21]

And also: ideal-HSVP reduces to RLWE
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Description of our work and motivation

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.

Idea: W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that P−1-ideal-HSVP reduces to P-ideal-HSVP.
Two reasons

1. [Gen09]: ideal-HSVP (for all ideals) reduces to P−1-ideal-HSVP,

we complete this reduction.

2. The NTRU reduction from [PS21] works only for integral ideals.

In fact we prove a more general reduction:

ideal-HSVP(W−1) reduces to ideal-HSVP(W) + ideal-HSVP(IA,B)
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Prior work: Gentry’s reduction



Rounding ideals

Two types of ideals: integral a ⊆ OK and fractional : I ⊆ K .

(And replete: I = x · a ⊂ KR with x ∈ K×
R )

Note

If a is integral, a−1 is fractional.

How to round an ideal

Take x ← I−1 with x ∼ λ · (1, . . . , 1)T with λ large, then x · I ⊆ OK and:

s = ideal-HSVP(I )
∼⇐⇒ x · s = ideal-HSVP(x · I ).

Rounding allows to randomize our ideals (sample random x).

x ∈ I−1 is small ⇒ x · I has small volume.

In [BDPW20], rounding is done with large elements (due to LLL).
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Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p−1 with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal I = b−1.

Output: x ∈ I \ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b−1, let a = v · b ⊆ OK .

4: Factor a: write a = pe11 · . . . · p
ek
k with pi primes. (Quantum)

5: Sample: pi uniformly, and let w = O(p−1
i ).

6: Update: x ← w · x , b← (w) · b.
7: Return x

The rounding step ensure that pi is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29
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Sampling ideals



How would you sample a big prime number in [A,B]?

You are not allowed to pre-compute the set of primes numbers in [A,B]!

Idea 1: rejection sampling

Sample N uniform in [A,B] until it is prime, then output it.

→ Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A,B]. Factor N =
∏

peii and output a random

pi ∈ [A,B].

→ Need rejection sampling: 2 more frequent than 7919.

→ It really looks like what we did in Gentry’s reduction.

We are going to use Idea 2 in order to sample prime ideals with a

trapdoor.
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Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 ≤ A < B integers

Output: (p, x) such that x ∈ p and N (p) ∈ [A,B].

1: repeat

2: Sample a small Gaussian x in OK . (Need a good basis of OK )

3: Factor (x): write (x) = pe11 · . . . · p
ek
k with pi primes. (Quantum)

4: until {pi , N (pi ) ∈ [A,B]} ≠ ∅.
5: Pick: p← {pi , N (pi ) ∈ [A,B]} uniformly. (Rejection sampling here)

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost

uniform in PA,B along with small x ∈ p \ {0}.
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Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d .

4: Sample x ←↩ U (B∞(r)
⋂
I )

5: Return b = x · I−1

ArakelovSampling output uniform integral ideals of norm ≈ rd for

r = 2O(d).
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What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b−1

Algorithm 3.3 ArakelovSampling′ algorithm

Output: An ideal b and y ∈ b−1.

1: Let q an uniform small prime ideal.

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q/N (q)1/d

4: Sample x ←↩ U (B∞(r)
⋂
I ).

5: Return b = x · I−1

Drawback

The element y = x−1 · sI can be very large compared to N (b−1)1/d .

→ This happens if x is unbalanced

16/29
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Some details on ArakelovSampling

Figure 2: B∞(r)

1. We pick I ≈ q/N (q)1/d .

2. We sample x ←↩ U (B∞(r)
⋂

I ).

3. We return b = x · I−1.

Necessary for uniform b

1. |B∞(r)
⋂
I | do not depend on I (too much).

2. Vol(Log(B∞(r))
⋂
{
∑

xi = t}) is ≈ constant for t ∈ [A,B].

Drawback

There are (a non-negligible proportion of) x ∈ B∞(r) with
∥∥x−1

∥∥ very

large.
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Main contribution:

P−1-ideal-SVP to P-ideal-SVP



First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealBA,B
algorithm

Input: a an ideal, sa ∈ a small, BA,B ⊂ KR a well chosen set.

Output: (b, y) such that y ∈ (b · a)−1.

1: Let (q, vq)← SampleWithTrap(·). (Quantum)

2: Sample a small continuous Gaussian ζ and a uniform rotation u.

3: Let I = exp(ζ) · u · q · a and sI = exp(ζ) · u · sq · sa ∈ I .

4: Sample x ←↩ U (BA,B
⋂
I ) using sI .

5: Return (b = x · I−1, y = x−1 · sI · vq)

(Normalization factors omitted)

Theorem

Let (b, y) = SampleIdealBA,B
(a, sa,A,B).

If BA,B is well chosen then b is almost uniform in IA,B and y is small.
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What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29



What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29



What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29



What does ”well chosen” means?

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,

1/η ≤ xi/
∏
j

x
1/d
j ≤ η.

This is the same as saying x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verify points 1 and 2 but not 3!

19/29



Our shape

Reminder: conditions for being well chosen:

• |BA,B
⋂
a| do not depend on a (too much).

• Vol(Log(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].

• Its elements must be balanced.

BηA,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Log( x

N (x)1/d

)∥∥∥∥
2

≤ log(η)

}
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Reminder: SampleIdealBA,B

The algorithm SampleIdealBA,B
:

1. Takes as input a ⊆ OK and sa ∈ a small.

2. Output b ⊆ OK uniform and y ∈ b−1 · a−1 small.

Now if we get in sb ∈ b small, we have that sb · y is small and

sb · y ∈ b · b−1 · a−1 = a−1

ideal-HSVP(a) + ideal-HSVP(b)
SampleIdealBA,B−−−−−−−−−−→ ideal-HSVP(a−1)
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Our P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A,B].

Algorithm 4.2 Outline of the P−1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].

Output: x ∈ I \ {0} small.

1: Let sp = O(p). (p is uniform)

2: Let (b, y) = SampleIdealA,B(p, sp)

3: if b is not prime. (with probability (poly ·ρK )−1) then

4: Fail.

5: Let sb = O(b).
6: Return sb︸︷︷︸

small

· y︸︷︷︸
small

.
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A note on rejection Sampling

We fail if b is not prime: we have to do rejection sampling.

The expected number of rejection is

|IA,B |
|PA,B |

≈ ρK = Ress=1 ζK (s).

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A,B.
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Application to NTRU



NTRU cryptosystem

Proposed first in [HPS96]. In NIST’s post-quantum standardization

process: NTRU and NTRUPrime.

Let q be an integer.

Definition (NTRUq)

Let f , g ∈ OK with coefficients ≪ √q and f invertible mod q.

Given h ∈ OK such that f · h = g mod q, find a small multiple of (f , g).

Advantages:

• Small keys.

• Fast encryption/decryption (much faster than RSA).

• Old.

[HPS96]: J. Hoffstein, J. Pipher, J. Silverman. ANTS 1998.
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NTRU instances from ideal-HSVP [PS21]

Karp reduction from [PS21].

Ideal SVP

a = (z)
⋂
OK .

Vol(a) = V .

SVP(a) = s

NTRU

q ≈ V 2/d .

h = ⌊q/z⌉.
(g , f ) = (s, s · {q/z})

Distribution of NTRU instances (DNTRU): sample p uniform small

prime and apply the reduction.

Consequence: worst-case based distribution for NTRU

NTRU for DNTRU ≥ P-ideal-SVP ≥ wc-ideal-SVP.
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Wrapping up



Contributions and open problems

Contributions:

• We show that solving ideal-HSVP on average over inverse of primes

is as hard as solving ideal-HSVP on average over primes.

• The new reduction gives an NTRU distribution based on a

worst-case problem for polynomial modulus.

Open problems:

• Can we have such reduction without factoring?

• Can we get rid of the cost in ρK?

• Can we have more precise approximates for |IA,B |/|PA,B |?
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Thank you for your attention

Any question?
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