Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski

INRIA Lyon, ENS de Lyon

- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.

- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.

To appear in the proceedings of **TCC 2023**. Available on: https://eprint.iacr.org/2023/1370

Definitions

Lattices

A 2-dimensional lattice

Definition

For $\mathbf{b}_1, \ldots, \mathbf{b}_n \in \mathbb{Z}^n$ linearly independent, the lattice spanned by the basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ is $\mathcal{L} = \sum_i \mathbb{Z} \cdot \mathbf{b}_i \subset \mathbb{R}^n$. It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in \mathcal{L} given the $(\mathbf{b}_i)_i$ is hard in general.

Lattice-based cryptography

Lattice cryptography (toy example). $B_{\rm pk}$ and $B_{\rm sk}$ are the basis of a lattice \mathcal{L} .

Lattice-based cryptography

Lattice cryptography (toy example). B_{pk} and B_{sk} are the basis of a lattice \mathcal{L} .

Secure as long as it is hard to find B_{sk} given B_{pk} . This problem is the Shortest-Vector-Problem (SVP).

Lattice-based cryptography

Lattice cryptography (toy example). B_{pk} and B_{sk} are the basis of a lattice \mathcal{L} .

Secure as long as it is hard to find B_{sk} given B_{pk} . This problem is the Shortest-Vector-Problem (SVP).

Note: \mathcal{L} must be chosen at random.

We use the field $K = \mathbb{Q}[X]/(X^n + 1)$, $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^r$. (K a number field, \mathcal{O}_K its ring of integers).

The size of an element $a \in K$ is $||a|| = \left(\sum_{i} |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

We use the field $K = \mathbb{Q}[X]/(X^n + 1)$, $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^r$. (K a number field, \mathcal{O}_K its ring of integers).

The size of an element $a \in K$ is $||a|| = \left(\sum_{i} |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

Definition (Ideal)

A set $\mathfrak{a} \subseteq K$ is an ideal if it is discrete, stable by addition and by multiplication by any element of \mathcal{O}_{K} . It is then a lattice.

Norm of an ideal: $\mathcal{N}(I) = \operatorname{Vol}(I)/\sqrt{\Delta_{\mathcal{K}}} \in \mathbb{Z}$.

Ideal inverse and factorization

Let $\mathfrak{a}, \mathfrak{b}$ ideals of K, and $a \in K$.

Principal ideal

 $(a) = \{x \cdot a, x \in \mathcal{O}_K\}.$

Multiplication and inverse

$$\mathfrak{a} \cdot \mathfrak{b} = \{\sum_{i} a_{i} \cdot b_{i}\}, \mathfrak{a}^{-1} = \{x \in \mathcal{K}, x \cdot \mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}\}.$$

We have that $\mathfrak{a} \cdot \mathfrak{a}^{-1} = \mathcal{O}_{\mathcal{K}}.$

Factorization

There exists a set of prime ideals \mathcal{P} such that any $\mathfrak{a} \subset K$ can be written in a unique way

$$\mathfrak{a} = \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}^{
u_\mathfrak{p}(\mathfrak{a})}$$

Definition (ideal-HSVP $_{\gamma}$)

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \operatorname{Vol}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

Definition (ideal-HSVP $_{\gamma}$)

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \operatorname{Vol}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

- There are specifics attacks on ideal lattices¹.
- Ideals are the simplest examples of module lattices (they are rank-1 modules), used in real world applications (KYBER, DILITHIUM).
- ideal-HSVP is related to other structured lattice problems (Module-SVP, NTRU, RingLWE).

¹[CDPR16, CDW17, PHS19]

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs **Ideal lattice basis**: O(d) integers.²

²Images from [Qua14]

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs **Ideal lattice basis**: O(d) integers.²

Bitsize of a typical element of \mathfrak{a} is $\log(\mathcal{N}(\mathfrak{a}))$. \rightarrow We want $\mathcal{N}(\mathfrak{a}) \approx \operatorname{poly}(d)^d$ in order to have small keys.

²Images from [Qua14]

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs **Ideal lattice basis**: O(d) integers.²

Bitsize of a typical element of \mathfrak{a} is $\log(\mathcal{N}(\mathfrak{a}))$. \rightarrow We want $\mathcal{N}(\mathfrak{a}) \approx \operatorname{poly}(d)^d$ in order to have small keys.

Also: faster algorithms.

²Images from [Qua14]

Worst-case: Solve \mathcal{P} for all instance of \mathcal{P} (for the worst instance). **Average-case for** D: Solve \mathcal{P} for $I \leftarrow D$ with non-negligible probability.

Average-case: "Find the secret key given a random public key".

Worst-case: Solve \mathcal{P} for *all* instance of \mathcal{P} (for the worst instance).

Average-case for *D*: Solve \mathcal{P} for $I \leftarrow D$ with non-negligible probability.

Average-case: "Find the secret key given a random public key".

Two reductions here:

- Worst-case to average case.
- Average case for D_1 to Average-case for D_2 .

Prior Works on ideal-HSVP

And also: ideal-HSVP reduces to RLWE

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W. **Idea:** W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W. **Idea:** W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that \mathcal{P}^{-1} -ideal-HSVP reduces to \mathcal{P} -ideal-HSVP.

Two reasons

- 1. [Gen09]: ideal-HSVP (for all ideals) reduces to \mathcal{P}^{-1} -ideal-HSVP, we complete this reduction.
- 2. The ${\rm NTRU}$ reduction from [PS21] works only for integral ideals.

In fact we prove a more general reduction: ideal-HSVP(\mathcal{W}^{-1}) reduces to ideal-HSVP(\mathcal{W}) + ideal-HSVP($\mathcal{I}_{A,B}$)

Prior work: Gentry's reduction

Rounding ideals

Two types of ideals: *integral* $\mathfrak{a} \subseteq \mathcal{O}_{K}$ and *fractional*: $I \subseteq K$. (And replete: $I = x \cdot \mathfrak{a} \subset K_{\mathbb{R}}$ with $x \in K_{\mathbb{R}}^{\times}$)

Note

If a is integral, a^{-1} is fractional.

How to round an ideal

Take $x \leftarrow I^{-1}$ with $x \sim \lambda \cdot (1, \dots, 1)^T$ with λ large, then $x \cdot I \subseteq \mathcal{O}_K$ and: $s = \text{ideal-HSVP}(I) \stackrel{\sim}{\longleftrightarrow} x \cdot s = \text{ideal-HSVP}(x \cdot I).$

Rounding ideals

Two types of ideals: *integral* $\mathfrak{a} \subseteq \mathcal{O}_K$ and *fractional*: $I \subseteq K$. (And replete: $I = x \cdot \mathfrak{a} \subset K_{\mathbb{R}}$ with $x \in K_{\mathbb{R}}^{\times}$)

Note

If a is integral, a^{-1} is fractional.

How to round an ideal

Take
$$x \leftarrow I^{-1}$$
 with $x \sim \lambda \cdot (1, ..., 1)^T$ with λ large, then $x \cdot I \subseteq \mathcal{O}_K$ and:
 $s = \text{ideal-HSVP}(I) \iff x \cdot s = \text{ideal-HSVP}(x \cdot I).$

Rounding allows to **randomize** our ideals (sample random *x*).

 $x \in I^{-1}$ is small $\Rightarrow x \cdot I$ has small volume.

In [BDPW20], rounding is done with large elements (due to LLL).

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $I = \mathfrak{b}^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

1: Let
$$x = 1$$
.

- 2: while b is large do
- 3: **Round** \mathfrak{b} : sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_{\mathcal{K}}$.
- 4: **Factor** a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return X

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $I = \mathfrak{b}^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

1: Let
$$x = 1$$
.

- 2: while b is large do
- 3: **Round** \mathfrak{b} : sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_{K}$.
- 4: **Factor** a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return X

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $I = b^{-1}$. Output: $x \in I \setminus \{0\}$ small. 1: Let x = 1. 2: while b is large do 3: Round b: sample v in b^{-1} , let $a = v \cdot b \subseteq \mathcal{O}_K$. 4: Factor a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum) 5: Sample: p_i uniformly, and let $w = \mathcal{O}(p_i^{-1})$.

6: **Update:** $x \leftarrow w \cdot x, \ \mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}.$

7: Return X

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $l = b^{-1}$. Output: $x \in l \setminus \{0\}$ small. 1: Let x = 1. 2: while b is large do 3: Round b: sample v in b^{-1} , let $a = v \cdot b \subseteq \mathcal{O}_K$. 4: Factor a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum) 5: Sample: p_i uniformly, and let $w = \mathcal{O}(p_i^{-1})$. 6: Update: $x \leftarrow w \cdot x, b \leftarrow (w) \cdot b$.

7: Return X

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

1: Let
$$x = 1$$
.

- 2: while b is large do
- 3: **Round** b: sample v in b^{-1} , let $a = v \cdot b \subseteq \mathcal{O}_K$.
- 4: **Factor** a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return X

The oracle \mathcal{O} solves ideal-HSVP for \mathfrak{p}^{-1} with \mathfrak{p} uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen09]

Input: An ideal $I = \mathfrak{b}^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

1: Let
$$x = 1$$

- 2: while b is large do
- 3: **Round** \mathfrak{b} : sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_{\mathcal{K}}$.
- 4: **Factor** a: write $a = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return *x*

Sampling ideals

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling

Sample N uniform in [A, B] until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling

Sample N uniform in [A, B] until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A, B]. Factor $N = \prod p_i^{e_i}$ and output a random $p_i \in [A, B]$.

 \rightarrow Need rejection sampling: 2 more frequent than 7919.

 \rightarrow It really looks like what we did in Gentry's reduction.

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling

Sample N uniform in [A, B] until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A, B]. Factor $N = \prod p_i^{e_i}$ and output a random $p_i \in [A, B]$.

 \rightarrow Need rejection sampling: 2 more frequent than 7919.

 \rightarrow It really looks like what we did in Gentry's reduction.

We are going to use Idea 2 in order to sample prime ideals with a trapdoor.

Algorithm 3.1 SampleWithTrap algorithm

Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: **until** $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)

Algorithm 3.1 SampleWithTrap algorithm

Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: **until** $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)
Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in $\mathcal{O}_{\mathcal{K}}$. (Need a good basis of $\mathcal{O}_{\mathcal{K}}$)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: **until** $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)

Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: **until** $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)

Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: until $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)

Input: $2 \le A < B$ integers

Output: (\mathfrak{p}, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

1: repeat

- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 4: **until** $\{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\} \neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow \{\mathfrak{p}_i, \mathcal{N}(\mathfrak{p}_i) \in [A, B]\}$ uniformly. (Rejection sampling here)
- 6: **Return** (\mathfrak{p}, x)

Theorem

This algorithms runs in quantum poly-time and outputs \mathfrak{p} almost uniform in $\mathcal{P}_{A,B}$ along with small $x \in \mathfrak{p} \setminus \{0\}$.

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

 $\textbf{Output:} \ \, \text{An ideal} \ \, \mathfrak{b}$

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}/\mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_\mathfrak{q}/\mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q}/\mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}}/\mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_\mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Algorithm 3.3 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $y \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_\mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Drawback

The element $y = x^{-1} \cdot s_l$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}$.

Algorithm 3.3 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $y \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_\mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot I^{-1}$ and $y = x^{-1} \cdot s_I$.

Drawback

The element $y = x^{-1} \cdot s_l$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}$. \rightarrow This happens if x is **unbalanced**

Some details on ArakelovSampling

Figure 2: $\mathcal{B}_{\infty}(r)$

- 1. We pick $I \approx \mathfrak{q}/\mathcal{N}(\mathfrak{q})^{1/d}$.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 3. We return $\mathfrak{b} = x \cdot I^{-1}$.

Necessary for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \cap I|$ do not depend on I (too much).
- 2. Vol(Log($\mathcal{B}_{\infty}(r)$) \cap { $\sum x_i = t$ }) is \approx constant for $t \in [A, B]$.

Some details on ArakelovSampling

Figure 2: $\mathcal{B}_{\infty}(r)$

- 1. We pick $I \approx \mathfrak{q}/\mathcal{N}(\mathfrak{q})^{1/d}$.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \cap I)$.
- 3. We return $\mathfrak{b} = x \cdot I^{-1}$.

Necessary for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \cap I|$ do not depend on I (too much).
- 2. Vol(Log($\mathcal{B}_{\infty}(r)$) \cap { $\sum x_i = t$ }) is \approx constant for $t \in [A, B]$.

Drawback

There are (a non-negligible proportion of) $x \in \mathcal{B}_{\infty}(r)$ with $||x^{-1}||$ very large.

Main contribution: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: \mathfrak{a} an ideal, $s_{\mathfrak{a}} \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: \mathfrak{a} an ideal, $s_{\mathfrak{a}} \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: \mathfrak{a} an ideal, $s_{\mathfrak{a}} \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: \mathfrak{a} an ideal, $s_{\mathfrak{a}} \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .

5: **Return**
$$(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: a an ideal, $s_a \in a$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_q)$

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdeal $B_{A,B}$ algorithm

Input: \mathfrak{a} an ideal, $s_{\mathfrak{a}} \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set. **Output:** (\mathfrak{b}, y) such that $y \in (\mathfrak{b} \cdot \mathfrak{a})^{-1}$.

- 1: Let $(q, v_q) \leftarrow \texttt{SampleWithTrap}(\cdot)$. (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} \cdot \mathfrak{a}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} \cdot s_{\mathfrak{a}} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{A,B} \cap I)$ using s_I .
- 5: **Return** $(\mathfrak{b} = x \cdot I^{-1}, y = x^{-1} \cdot s_I \cdot v_{\mathfrak{q}})$

(Normalization factors omitted)

Theorem

Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{\mathcal{B}_{A,B}}(\mathfrak{a}, s_{\mathfrak{a}}, A, B)$. If $\mathcal{B}_{A,B}$ is well chosen then \mathfrak{b} is almost uniform in $\mathcal{I}_{A,B}$ and y is small.

- $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$1/\eta \le x_i / \prod_j x_j^{1/d} \le \eta.$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

- $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$1/\eta \le x_i / \prod_j x_j^{1/d} \le \eta.$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

- $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$1/\eta \le x_i / \prod_j x_j^{1/d} \le \eta.$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

- $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$1/\eta \le x_i / \prod_j x_j^{1/d} \le \eta.$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \dots, 1)$.

In [BDPW20]: $\mathcal{B}_{\infty}(r)$: verify points 1 and 2 but not 3!

Our shape

Reminder: conditions for being well chosen:

- $|\mathcal{B}_{A,B} \bigcap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.
- $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

$$\mathcal{B}^\eta_{A,B} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A,B], \ \left\| \mathsf{Log}\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \mathsf{log}(\eta)
ight\}$$

- $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

$$\mathcal{B}^\eta_{A,B} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \; \; |\mathcal{N}(x)| \in [A,B], \; \; \left\| \log\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \log(\eta)
ight\}$$

- $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

$$\mathcal{B}^\eta_{A,B} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A,B], \ \left\| \log\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \log(\eta)
ight\}$$

- $|\mathcal{B}_{A,B} \cap \mathfrak{a}|$ do not depend on \mathfrak{a} (too much).
- Vol(Log($\mathcal{B}_{A,B}$) \cap { $\sum x_i = t$ }) is constant for $t \in [A, B]$.
- Its elements must be balanced.

$$\mathcal{B}^\eta_{A,B} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \; \; |\mathcal{N}(x)| \in [A,B], \; \; \left\| \mathsf{Log}\left(rac{x}{\mathcal{N}(x)^{1/d}}
ight)
ight\|_2 \leq \mathsf{log}(\eta)
ight\}$$

The algorithm SampleIdeal_{$\mathcal{B}_{A,B}$}:

- 1. Takes as input $\mathfrak{a} \subseteq \mathcal{O}_K$ and $s_\mathfrak{a} \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_{\mathcal{K}}$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

The algorithm SampleIdeal_{$\mathcal{B}_{A,B}$}:

- 1. Takes as input $\mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}$ and $s_{\mathfrak{a}} \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_{\mathcal{K}}$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

Now if we get in $s_{\mathfrak{b}} \in \mathfrak{b}$ small, we have that $s_{\mathfrak{b}} \cdot y$ is small and

$$s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1} = \mathfrak{a}^{-1}$$

The algorithm SampleIdeal_{$\mathcal{B}_{A,B}$}:

- 1. Takes as input $\mathfrak{a} \subseteq \mathcal{O}_{\mathcal{K}}$ and $s_{\mathfrak{a}} \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_{\mathcal{K}}$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

Now if we get in $s_{\mathfrak{b}} \in \mathfrak{b}$ small, we have that $s_{\mathfrak{b}} \cdot y$ is small and

$$s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1} = \mathfrak{a}^{-1}$$

$$\mathrm{ideal}\text{-}\mathrm{HSVP}(\mathfrak{a}) + \mathrm{ideal}\text{-}\mathrm{HSVP}(\mathfrak{b}) \xrightarrow[]{\mathrm{SampleIdeal}_{\mathcal{B}_{A,B}}} \mathrm{ideal}\text{-}\mathrm{HSVP}(\mathfrak{a}^{-1})$$

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability (poly ρ_{K})⁻¹) then Fail. 4. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$.

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability (poly ρ_{K})⁻¹) then Fail. 4. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$.

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability $(poly \cdot \rho_K)^{-1}$) then Fail. 4. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$.

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability (poly ρ_{K})⁻¹) then Fail 4. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$.

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability (poly ρ_{K})⁻¹) then Fail. 4. 5: Let $s_{\mathfrak{h}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$.

Algorithm 4.2 Outline of the \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP reduction **Input:** An ideal $I = \mathfrak{p}^{-1}$ with \mathfrak{p} uniform prime of norm in [A, B]. **Output:** $x \in I \setminus \{0\}$ small. 1: Let $s_{\mathfrak{p}} = \mathcal{O}(\mathfrak{p})$. (\mathfrak{p} is uniform) 2: Let $(\mathfrak{b}, y) = \text{SampleIdeal}_{AB}(\mathfrak{p}, s_{\mathfrak{p}})$ 3: if b is not prime. (with probability (poly ρ_{K})⁻¹) then Fail. 4. 5: Let $s_{\mathfrak{b}} = \mathcal{O}(\mathfrak{b})$. 6: **Return** $s_b \cdot y$. smal

We fail if \mathfrak{b} is not prime: we have to do rejection sampling. The expected number of rejection is

$$\frac{|\mathcal{I}_{A,B}|}{|\mathcal{P}_{A,B}|} \approx \rho_{K} = \operatorname{Res}_{s=1} \zeta_{K}(s).$$

This quantity can be exponential for some fields (E.g., multiquadratics).

We fail if \mathfrak{b} is not prime: we have to do rejection sampling. The expected number of rejection is

$$\frac{|\mathcal{I}_{A,B}|}{|\mathcal{P}_{A,B}|} \approx \rho_{K} = \operatorname{Res}_{s=1} \zeta_{K}(s).$$

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A, B.

Application to NTRU

Proposed first in [HPS96]. In NIST's post-quantum standardization process: **NTRU** and **NTRUPrime**.

```
Let q be an integer.
```

```
Definition (NTRU<sub>q</sub>)
```

Let $f, g \in \mathcal{O}_K$ with coefficients $\ll \sqrt{q}$ and f invertible mod q. Given $h \in \mathcal{O}_K$ such that $f \cdot h = g \mod q$, find a small multiple of (f, g).

Advantages:

- Small keys.
- Fast encryption/decryption (much faster than RSA).
- Old.

[HPS96]: J. Hoffstein, J. Pipher, J. Silverman. ANTS 1998.

Karp reduction from [PS21].

Ideal SVP $a = (z) \bigcap \mathcal{O}_{K}.$ Vol(a) = V.SVP(a) = s $\begin{aligned} \textbf{NTRU} \\ q &\approx V^{2/d}. \\ h &= \lfloor q/z \rceil. \\ (g, f) &= (s, s \cdot \{q/z\}) \end{aligned}$

Karp reduction from [PS21].

Ideal SVP	NTRU
$\mathfrak{a} = (z) \bigcap \mathcal{O}_{K}.$	$qpprox V^{2/d}.$
$Vol(\mathfrak{a}) = V.$	$h = \lfloor q/z ceil.$
$\mathrm{SVP}(\mathfrak{a}) = s$	$(g, f) = (s, s \cdot \{q/z\})$

Distribution of NTRU **instances** (D^{NTRU}): sample p uniform small prime and apply the reduction.

Consequence: worst-case based distribution for NTRU NTRU for $D^{NTRU} \ge \mathcal{P}$ -ideal-SVP \ge wc-ideal-SVP. Wrapping up

Contributions:

- We show that solving ideal-HSVP on average over inverse of primes is as hard as solving ideal-HSVP on average over primes.
- The new reduction gives an NTRU distribution based on a worst-case problem for polynomial modulus.

Contributions:

- We show that solving ideal-HSVP on average over inverse of primes is as hard as solving ideal-HSVP on average over primes.
- The new reduction gives an NTRU distribution based on a worst-case problem for polynomial modulus.

Open problems:

- Can we have such reduction without factoring?
- Can we get rid of the cost in ρ_K ?
- Can we have more precise approximates for $|\mathcal{I}_{A,B}|/|\mathcal{P}_{A,B}|$?

Any question?

References i

- K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski, Random self-reducibility of Ideal-SVP via Arakelov random walks, CRYPTO, 2020.
- K. Boudgoust, E. Gachon, and A. Pellet-Mary, Some easy instances of Ideal-SVP and implications on the partial Vandermonde knapsack problem, CRYPTO, 2022.
- K. de Boer, *Random walks on arakelov class groups.*, Ph.D. thesis, Leiden University, 2022, Available on request from the author.
- R. Cramer, L. Ducas, C. Peikert, and O. Regev, *Recovering short generators of principal ideals in cyclotomic rings*, EUROCRYPT 2016, 2016.
- R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations and application to Ideal-SVP, EUROCRYPT, 2017.

- C. Gentry, *A fully homomorphic encryption scheme*, Ph.D. thesis, Stanford University, 2009.
- A. Pellet-Mary, G. Hanrot, and D. Stehlé, *Approx-SVP in ideal lattices with pre-processing*, EUROCRYPT, 2019.
- A. Pellet-Mary and D. Stehlé, On the hardness of the NTRU problem, ASIACRYPT, 2021.
- Quartl, Matrix pattern qtl3, 2014, File: Matrix pattern qtl3.svg.