Ideal-SVP is Hard for Small-Norm Uniform Prime Ideals

Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski

INRIA Lyon, ENS de Lyon

- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.
- New reduction: \mathcal{P}^{-1} -ideal-SVP to \mathcal{P} -ideal-SVP.
- Application: new distribution of NTRU instances with difficulty based on wc-ideal-SVP.

To appear in the proceedings of TCC 2023. Available on: <https://eprint.iacr.org/2023/1370>

[Definitions](#page-3-0)

Lattices

A 2-dimensional lattice

Definition

For $\mathbf{b}_1,\ldots,\mathbf{b}_n\in\mathbb{Z}^n$ linearly independent, the lattice spanned by the basis $\mathbf{b}_1,\ldots,\mathbf{b}_n$ is $\mathcal{L}=\sum_i \mathbb{Z} \cdot \mathbf{b}_i \subset \mathbb{R}^n$. It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in $\mathcal L$ given the $(\mathbf b_i)_i$ is hard in general.

Lattice-based cryptography

Lattice cryptography (toy example). $B_{\rm pk}$ and $B_{\rm sk}$ are the basis of a lattice \mathcal{L} .

Lattice-based cryptography

Lattice cryptography (toy example). $B_{\rm pk}$ and $B_{\rm sk}$ are the basis of a lattice \mathcal{L} .

Secure as long as it is hard to find $B_{\rm sk}$ given $B_{\rm pk}$. This problem is the Shortest-Vector-Problem (SVP).

Lattice-based cryptography

Lattice cryptography (toy example). $B_{\rm pk}$ and $B_{\rm sk}$ are the basis of a lattice \mathcal{L} .

Secure as long as it is hard to find $B_{\rm sk}$ given $B_{\rm pk}$. This problem is the Shortest-Vector-Problem (SVP).

Note: \mathcal{L} must be chosen at random.

We use the field $K = \mathbb{Q}[X]/(X^n + 1)$, $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^r$. (K a number field, \mathcal{O}_K its ring of integers).

The size of an element $a \in K$ is $\|a\| = \left(\sum_i |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

We use the field $K = \mathbb{Q}[X]/(X^n + 1)$, $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ for $n = 2^r$. (K a number field, \mathcal{O}_K its ring of integers).

The size of an element $a \in K$ is $\|a\| = \left(\sum_i |a_i|^2\right)^{1/2}$.

The size of an element is the ℓ_2 -norm of its Minkowski embedding.

Definition (Ideal)

A set $a \subseteq K$ is an ideal if it is discrete, stable by addition and by multiplication by any element of \mathcal{O}_K . It is then a lattice.

Norm of an ideal: $\mathcal{N}(I) = \text{Vol}(I)/\sqrt{\Delta_K} \in \mathbb{Z}$.

Ideal inverse and factorization

Let a, b ideals of K , and $a \in K$.

Principal ideal

 $(a) = \{x \cdot a, x \in \mathcal{O}_K\}.$

Multiplication and inverse

$$
\mathfrak{a} \cdot \mathfrak{b} = \{ \sum_i a_i \cdot b_i \}, \mathfrak{a}^{-1} = \{ x \in K, x \cdot \mathfrak{a} \subseteq \mathcal{O}_K \}.
$$

We have that $\mathfrak{a} \cdot \mathfrak{a}^{-1} = \mathcal{O}_K$.

Factorization

There exists a set of prime ideals P such that any $a \subset K$ can be written in a unique way

$$
\mathfrak{a}=\prod_{\mathfrak{p}\in\mathcal{P}}\mathfrak{p}^{\nu_{\mathfrak{p}}(\mathfrak{a})}
$$

.

Definition (ideal-HSVP_{γ})

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \text{Vol}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

Definition (ideal-HSVP_{γ})

Given an ideal $\mathfrak{a} \subseteq K$, find $x \in \mathfrak{a} \setminus \{0\}$ with $||x|| \leq \gamma \cdot \text{Vol}(\mathfrak{a})^{1/d}$.

Ideal lattices are **not typical lattices**. E.g., they verify $\lambda_1(I) \approx \lambda_d(I)$.

- \bullet There are specifics attacks on ideal lattices¹.
- Ideals are the simplest examples of module lattices (they are rank-1 modules), used in real world applications (KYBER, DILITHIUM).
- ideal-HSVP is related to other structured lattice problems (Module-SVP, NTRU, RingLWE).

¹ [\[CDPR16,](#page-95-0) [CDW17,](#page-95-1) [PHS19\]](#page-96-0)

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs Ideal lattice basis: $O(d)$ integers.²

² Images from [\[Qua14\]](#page-96-1)

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs Ideal lattice basis: $O(d)$ integers.²

Bitsize of a typical element of α is log($\mathcal{N}(\alpha)$). \rightarrow We want $\mathcal{N}(\mathfrak{a})\approx$ poly $(d)^d$ in order to have small keys.

² Images from [\[Qua14\]](#page-96-1)

Why small ideal lattices?

Typical lattice basis: $O(d^2)$ integers vs Ideal lattice basis: $O(d)$ integers.²

Bitsize of a typical element of α is log($\mathcal{N}(\alpha)$). \rightarrow We want $\mathcal{N}(\mathfrak{a})\approx$ poly $(d)^d$ in order to have small keys.

Also: faster algorithms.

² Images from [\[Qua14\]](#page-96-1)

Worst-case: Solve P for all instance of P (for the worst instance). **Average-case for D:** Solve P for $I \leftarrow D$ with non-negligible probability.

Average-case: "Find the secret key given a random public key".

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for $I \leftarrow D$ with non-negligible probability.

Average-case: "Find the secret key given a random public key".

Two reductions here:

- Worst-case to average case.
- Average case for D_1 to Average-case for D_2 .

Prior Works on ideal-HSVP

And also: ideal-HSVP reduces to RLWE

Random version of ideal-HSVP

 W -ideal-HSVP: solving ideal-HSVP for a uniform element of W . **Idea:** W is the set of all public keys (a set of ideals).

Note: there are sets W such that W -ideal-HSVP is easy [\[BGP22\]](#page-95-2).

Random version of ideal-HSVP

 W -ideal-HSVP: solving ideal-HSVP for a uniform element of W . **Idea:** W is the set of all public keys (a set of ideals).

Note: there are sets W such that W -ideal-HSVP is easy [\[BGP22\]](#page-95-2).

We show that $\mathcal{P}^{-1}\text{-ideal-HSVP}$ reduces to $\mathcal{P}\text{-ideal-HSVP}.$

Two reasons

- 1. [\[Gen09\]](#page-96-2): ideal-HSVP (for all ideals) reduces to \mathcal{P}^{-1} -ideal-HSVP, we complete this reduction.
- 2. The NTRU reduction from [\[PS21\]](#page-96-3) works only for integral ideals.

In fact we prove a more general reduction: ideal-HSVP (\mathcal{W}^{-1}) reduces to ideal-HSVP $(\mathcal{W})+$ ideal-HSVP $(\mathcal{I}_{\mathcal{A},\mathcal{B}})$

[Prior work: Gentry's reduction](#page-21-0)

Rounding ideals

Two types of ideals: *integral* $\mathfrak{a} \subseteq \mathcal{O}_K$ and *fractional*: $I \subseteq K$. (And replete: $1 = x \cdot a \subset K_{\mathbb{R}}$ with $x \in K_{\mathbb{R}}^{\times}$)

Note

If a is integral, a^{-1} is fractional.

How to round an ideal

Take
$$
x \leftarrow I^{-1}
$$
 with $x \sim \lambda \cdot (1, ..., 1)^T$ with λ large, then $x \cdot I \subseteq \mathcal{O}_K$ and:
\n
$$
s = \text{ideal-HSVP}(I) \xleftarrow{\sim} x \cdot s = \text{ideal-HSVP}(x \cdot I).
$$

Rounding ideals

Two types of ideals: *integral* $\mathfrak{a} \subseteq \mathcal{O}_K$ and *fractional*: $I \subseteq K$. (And replete: $1 = x \cdot a \subset K_{\mathbb{R}}$ with $x \in K_{\mathbb{R}}^{\times}$)

Note

If a is integral, a^{-1} is fractional.

How to round an ideal

Take
$$
x \leftarrow I^{-1}
$$
 with $x \sim \lambda \cdot (1, ..., 1)^T$ with λ large, then $x \cdot I \subseteq \mathcal{O}_K$ and:
\n $s = \text{ideal-HSVP}(I) \iff x \cdot s = \text{ideal-HSVP}(x \cdot I)$.

Rounding allows to randomize our ideals (sample random x).

 $x \in I^{-1}$ is small $\Rightarrow x \cdot I$ has small volume.

In [\[BDPW20\]](#page-95-3), rounding is done with large elements (due to LLL).

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $b \leftarrow (w) \cdot b$.

7: Return x

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $b \leftarrow (w) \cdot b$.

7: Return x

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $b \leftarrow (w) \cdot b$.

7: Return x

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return x

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return x

The oracle $\mathcal O$ solves ideal-HSVP for \mathfrak{p}^{-1} with $\mathfrak p$ uniform small prime.

Algorithm 2.1 Outline of the reduction of [\[Gen09\]](#page-96-2)

Input: An ideal $I = b^{-1}$.

Output: $x \in I \setminus \{0\}$ small.

- 1: Let $x = 1$.
- 2: while $\mathfrak b$ is large do
- 3: **Round** b: sample v in \mathfrak{b}^{-1} , let $\mathfrak{a} = v \cdot \mathfrak{b} \subseteq \mathcal{O}_K$.
- 4: **Factor a:** write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_k^{e_k}$ with \mathfrak{p}_i primes. (Quantum)
- 5: **Sample:** \mathfrak{p}_i uniformly, and let $w = \mathcal{O}(\mathfrak{p}_i^{-1})$.
- 6: **Update:** $x \leftarrow w \cdot x$, $\mathfrak{b} \leftarrow (w) \cdot \mathfrak{b}$.

7: Return x

[Sampling ideals](#page-30-0)

You are not allowed to pre-compute the set of primes numbers in $[A, B]!$

Idea 1: rejection sampling

Sample N uniform in $[A, B]$ until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

You are not allowed to pre-compute the set of primes numbers in $[A, B]$!

Idea 1: rejection sampling

Sample N uniform in $[A, B]$ until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in $[A,B]$. Factor $N=\prod p_i^{e_i}$ and output a random $p_i \in [A, B]$.

 \rightarrow Need rejection sampling: 2 more frequent than 7919.

 \rightarrow It really looks like what we did in Gentry's reduction.

You are not allowed to pre-compute the set of primes numbers in $[A, B]$!

Idea 1: rejection sampling

Sample N uniform in $[A, B]$ until it is prime, then output it.

 \rightarrow Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in $[A,B]$. Factor $N=\prod p_i^{e_i}$ and output a random $p_i \in [A, B]$.

 \rightarrow Need rejection sampling: 2 more frequent than 7919.

 \rightarrow It really looks like what we did in Gentry's reduction.

We are going to use Idea 2 in order to sample prime ideals with a trapdoor.

Algorithm 3.1 SampleWithTrap algorithm

Input: $2 \leq A \leq B$ integers

```
Output: (p, x) such that x \in \mathfrak{p} and \mathcal{N}(\mathfrak{p}) \in [A, B].
```
- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i, \; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: Return (p, x)

Algorithm 3.1 SampleWithTrap algorithm

Input: $2 \leq A \leq B$ integers

Output: (p, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i, \; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: Return (p, x)
Input: $2 \leq A \leq B$ integers

Output: (p, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i, \; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: Return (p, x)

Input: $2 \leq A \leq B$ integers

```
Output: (p, x) such that x \in \mathfrak{p} and \mathcal{N}(\mathfrak{p}) \in [A, B].
```
- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i,\; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: **Return** (p, x)

Input: $2 \leq A \leq B$ integers

Output: (p, x) such that $x \in \mathfrak{p}$ and $\mathcal{N}(\mathfrak{p}) \in [A, B]$.

- 1: repeat
- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i, \; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: **Return** (p, x)

Input: $2 \leq A \leq B$ integers

```
Output: (p, x) such that x \in p and \mathcal{N}(p) \in [A, B].
```
1: repeat

- 2: Sample a small Gaussian x in \mathcal{O}_K . (Need a good basis of \mathcal{O}_K)
- 3: Factor (x): write $(x) = p_1^{e_1} \cdot \ldots \cdot p_k^{e_k}$ with p_i primes. (Quantum)
- 4: until $\{p_i, \mathcal{N}(p_i) \in [A, B]\}\neq \emptyset$.
- 5: Pick: $\mathfrak{p} \leftarrow {\mathfrak{p}}_i, \; \mathcal{N}(\mathfrak{p}_i) \in [A,B] \}$ uniformly. (Rejection sampling here)
- 6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost uniform in $\mathcal{P}_{A,B}$ along with small $x \in \mathfrak{p} \setminus \{0\}$.

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 4: Sample $\mathsf{x} \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r) \bigcap I\right)$
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let q an uniform small prime ideal.
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u.
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$

Algorithm 3.3 ArakelovSampling' algorithm

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(·). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r)\bigcap I\right)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$ and $y = x^{-1} \cdot s_l$.

Algorithm 3.3 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $\mathfrak{y} \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(·). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r)\bigcap I\right)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$ and $y = x^{-1} \cdot s_l$.

Drawback

The element $y = x^{-1} \cdot s_I$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}.$

Algorithm 3.3 ArakelovSampling' algorithm

Output: An ideal \mathfrak{b} and $\mathfrak{y} \in \mathfrak{b}^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(·). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$ and $s_I = \exp(\zeta) \cdot u \cdot s_{\mathfrak{q}} / \mathcal{N}(\mathfrak{q})^{1/d} \in I$.
- 4: Sample $x \leftarrow \mathcal{U}\left(\mathcal{B}_{\infty}(r)\bigcap I\right)$.
- 5: **Return** $\mathfrak{b} = x \cdot l^{-1}$ and $y = x^{-1} \cdot s_l$.

Drawback

The element $y = x^{-1} \cdot s_I$ can be very large compared to $\mathcal{N}(\mathfrak{b}^{-1})^{1/d}.$ \rightarrow This happens if x is **unbalanced**

Some details on ArakelovSampling

Figure 2: $\mathcal{B}_{\infty}(r)$

- 1. We pick $I \approx \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.

3. We return
$$
\mathfrak{b} = x \cdot I^{-1}
$$
.

Necessary for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \bigcap I|$ do not depend on I (too much).
- 2. $\mathsf{Vol}(\mathsf{Log}(\mathcal{B}_\infty(r))\bigcap \left\{ \sum x_i = t \right\})$ is \approx constant for $t\in [A,B].$

Some details on ArakelovSampling

Figure 2: $\mathcal{B}_{\infty}(r)$

- 1. We pick $I \approx \mathfrak{q} / \mathcal{N}(\mathfrak{q})^{1/d}$.
- 2. We sample $x \leftarrow \mathcal{U}(\mathcal{B}_{\infty}(r) \bigcap I)$.

3. We return
$$
\mathfrak{b} = x \cdot I^{-1}
$$
.

Necessary for uniform b

- 1. $|\mathcal{B}_{\infty}(r) \bigcap I|$ do not depend on I (too much).
- 2. $\mathsf{Vol}(\mathsf{Log}(\mathcal{B}_\infty(r))\bigcap \left\{ \sum x_i = t \right\})$ is \approx constant for $t\in [A,B].$

Drawback

There are (a non-negligible proportion of) $x \in \mathcal{B}_{\infty}(r)$ with $||x^{-1}||$ very large.

[Main contribution:](#page-59-0) $\mathcal{P}^{-1}\text{-ideal-SVP}$ $\mathcal{P}^{-1}\text{-ideal-SVP}$ $\mathcal{P}^{-1}\text{-ideal-SVP}$ to $\mathcal{P}\text{-ideal-SVP}$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$. 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)

- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_I = \exp(\zeta) \cdot u \cdot s_q \cdot s_q \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I\right)$ using \boldsymbol{s}_I .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

We generalize the approach of [\[BDPW20,](#page-95-0) [Boe22\]](#page-95-1):

 ${\sf Algorithm~ 4.1~SampleIdeal}_{\mathcal{B}_{A,B}}$ algorithm

Input: a an ideal, $s_a \in \mathfrak{a}$ small, $\mathcal{B}_{A,B} \subset \mathcal{K}_{\mathbb{R}}$ a well chosen set.

Output: (b, y) such that $y \in (b \cdot a)^{-1}$.

- 1: Let $(q, v_q) \leftarrow$ SampleWithTrap(\cdot). (Quantum)
- 2: Sample a small continuous Gaussian ζ and a uniform rotation u .
- 3: Let $I = \exp(\zeta) \cdot u \cdot q \cdot a$ and $s_1 = \exp(\zeta) \cdot u \cdot s_a \cdot s_a \in I$.
- 4: Sample $x \hookleftarrow \mathcal{U}\left(\mathcal{B}_{A,B}\bigcap I \right)$ using s_{I} .
- 5: **Return** $(b = x \cdot l^{-1}, y = x^{-1} \cdot s_l \cdot v_q)$

(Normalization factors omitted)

Theorem

Let $(\mathfrak{b}, \mathfrak{y}) =$ SampleIdeal $_{\mathcal{B}_{A,B}}(\mathfrak{a}, s_{\mathfrak{a}}, A, B)$. If $B_{A,B}$ is well chosen then b is almost uniform in $\mathcal{I}_{A,B}$ and y is small.

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap \left\{\sum x_i=t\right\}\right)$ is constant for $t\in [A,B].$
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$
1/\eta \leq x_i/\prod_j x_j^{1/d} \leq \eta.
$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1).$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- \bullet Vol $(\text{Log}(\mathcal{B}_{A,B})\bigcap \{\sum x_i=t\})$ is constant for $t\in [A,B].$
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$
1/\eta \leq x_i/\prod_j x_j^{1/d} \leq \eta.
$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1).$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap \left\{\sum x_i=t\right\}\right)$ is constant for $t\in [A,B].$
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$
1/\eta \leq x_i/\prod_j x_j^{1/d} \leq \eta.
$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1).$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap \left\{\sum x_i=t\right\}\right)$ is constant for $t\in [A,B].$
- Its elements must be balanced.

Balanced elements (for Minkowski embedding)

 $x \in K$ is balanced if for all *i*,

$$
1/\eta \leq x_i/\prod_j x_j^{1/d} \leq \eta.
$$

This is the same as saying $x \approx \mathcal{N}(x)^{1/d} \cdot (1, \ldots, 1).$

In [\[BDPW20\]](#page-95-0): $\mathcal{B}_{\infty}(r)$: verify points 1 and 2 but not 3!

Our shape

Reminder: conditions for being well chosen:

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap\left\{\sum x_i=t\right\})$ is constant for $t\in[A,B].$
- Its elements must be balanced.
- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap\left\{\sum x_i=t\right\})$ is constant for $t\in[A,B].$
- Its elements must be balanced.

$$
\mathcal{B}_{A,B}^{\eta} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A, B], \ \left\| \text{Log}\left(\frac{x}{\mathcal{N}(x)^{1/d}}\right) \right\|_2 \leq \text{log}(\eta) \right\}
$$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap \left\{ \sum x_i=t \right\})$ is constant for $t\in [A,B].$
- Its elements must be balanced.

$$
\mathcal{B}_{A,B}^{\eta} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \hspace{0.2cm} \left| \mathcal{N}(x) \right| \in [A,B], \hspace{0.2cm} \left\| \text{Log} \left(\frac{x}{\mathcal{N}(x)^{1/d}} \right) \right\|_2 \leq \text{log}(\eta) \right\}
$$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap\left\{\sum x_i=t\right\})$ is constant for $t\in[A,B].$
- Its elements must be balanced.

$$
\mathcal{B}_{A,B}^{\eta} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A, B], \ \left\| \text{Log}\left(\frac{x}{\mathcal{N}(x)^{1/d}}\right) \right\|_2 \leq \text{log}(\eta) \right\}
$$

- \bullet $\vert \mathcal{B}_{A,B} \bigcap \mathfrak{a} \vert$ do not depend on \mathfrak{a} (too much).
- $\bullet\ \textsf{Vol}(\textsf{Log}(\mathcal{B}_{A,B})\bigcap\left\{\sum x_i=t\right\})$ is constant for $t\in[A,B].$
- Its elements must be balanced.

$$
\mathcal{B}_{A,B}^{\eta} = \left\{ x \in \mathcal{K}_{\mathbb{R}}, \ |\mathcal{N}(x)| \in [A, B], \ \left\| \text{Log}\left(\frac{x}{\mathcal{N}(x)^{1/d}} \right) \right\|_2 \leq \text{log}(\eta) \right\}
$$

The algorithm $\texttt{SampleIdeal}_{\mathcal{B}_{A,B}}\text{:}$

- 1. Takes as input $a \subseteq \mathcal{O}_K$ and $s_a \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_K$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

The algorithm $\texttt{SampleIdeal}_{\mathcal{B}_{A,B}}\text{:}$

- 1. Takes as input $\mathfrak{a} \subset \mathcal{O}_K$ and $s_{\mathfrak{a}} \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_K$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

Now if we get in $s_b \in \mathfrak{b}$ small, we have that $s_b \cdot y$ is small and

$$
s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1} = \mathfrak{a}^{-1}
$$

The algorithm $\texttt{SampleIdeal}_{\mathcal{B}_{A,B}}\text{:}$

- 1. Takes as input $\mathfrak{a} \subset \mathcal{O}_K$ and $s_{\mathfrak{a}} \in \mathfrak{a}$ small.
- 2. Output $\mathfrak{b} \subseteq \mathcal{O}_K$ uniform and $y \in \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1}$ small.

Now if we get in $s_b \in \mathfrak{b}$ small, we have that $s_b \cdot y$ is small and

$$
s_{\mathfrak{b}} \cdot y \in \mathfrak{b} \cdot \mathfrak{b}^{-1} \cdot \mathfrak{a}^{-1} = \mathfrak{a}^{-1}
$$

 $ideal-HSVP(a) + ideal-HSVP(b)$ SampleIdeal_{B_{A,B} ideal-HSVP(\mathfrak{a}^{-1})}

We fail if $\mathfrak b$ is not prime: we have to do rejection sampling. The expected number of rejection is

$$
\frac{|\mathcal{I}_{A,B}|}{|\mathcal{P}_{A,B}|} \approx \rho_K = \text{Res}_{s=1} \zeta_K(s).
$$

This quantity can be exponential for some fields (E.g., multiquadratics).

We fail if $\mathfrak b$ is not prime: we have to do rejection sampling. The expected number of rejection is

$$
\frac{|\mathcal{I}_{A,B}|}{|\mathcal{P}_{A,B}|} \approx \rho_K = \text{Res}_{s=1} \zeta_K(s).
$$

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A, B.

[Application to NTRU](#page-87-0)

Proposed first in [HPS96]. In NIST's post-quantum standardization process: NTRU and NTRUPrime.

```
Let q be an integer.
```
Definition ($NTRU_q$)

Let $f, g \in \mathcal{O}_K$ with coefficients $\ll \sqrt{q}$ and f invertible mod q.

Given $h \in \mathcal{O}_K$ such that $f \cdot h = g$ mod q, find a small multiple of (f, g) .

Advantages:

- Small keys.
- Fast encryption/decryption (much faster than RSA).
- Old.

[HPS96]: J. Hoffstein, J. Pipher, J. Silverman. ANTS 1998.

Karp reduction from [\[PS21\]](#page-96-0).

Ideal SVP $a=(z)\bigcap \mathcal{O}_K$. $Vol(a) = V.$ $SVP(\mathfrak{a})=s$

NTRU $q \approx V^{2/d}$. $h = |q/z|$. $(g, f) = (s, s \cdot \{q/z\})$ Karp reduction from [\[PS21\]](#page-96-0).

Distribution of NTRU instances (D^{NTRU}) : sample p uniform small prime and apply the reduction.

Consequence: worst-case based distribution for NTRU NTRU for $D^{\text{NTRU}} \geq \mathcal{P}\text{-ideal-SVP} \geq$ wc-ideal-SVP.

[Wrapping up](#page-91-0)

Contributions:

- We show that solving ideal-HSVP on average over inverse of primes is as hard as solving ideal-HSVP on average over primes.
- The new reduction gives an NTRU distribution based on a worst-case problem for polynomial modulus.

Contributions:

- We show that solving ideal-HSVP on average over inverse of primes is as hard as solving ideal-HSVP on average over primes.
- The new reduction gives an NTRU distribution based on a worst-case problem for polynomial modulus.

Open problems:

- Can we have such reduction without factoring?
- Can we get rid of the cost in ρ_K ?
- Can we have more precise approximates for $|\mathcal{I}_{A,B}|/|\mathcal{P}_{A,B}|$?

Any question?

References i

- K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski, Random 譶 self-reducibility of Ideal-SVP via Arakelov random walks, CRYPTO, 2020.
- E. K. Boudgoust, E. Gachon, and A. Pellet-Mary, Some easy instances of Ideal-SVP and implications on the partial Vandermonde knapsack problem, CRYPTO, 2022.
- 譶 K. de Boer, Random walks on arakelov class groups., Ph.D. thesis, Leiden University, 2022, Available on request from the author.
- 歸 R. Cramer, L. Ducas, C. Peikert, and O. Regev, Recovering short generators of principal ideals in cyclotomic rings, EUROCRYPT 2016, 2016.
- R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class relations and application to Ideal-SVP, EUROCRYPT, 2017.
- \Box C. Gentry, A fully homomorphic encryption scheme, Ph.D. thesis, Stanford University, 2009.
- 歸 A. Pellet-Mary, G. Hanrot, and D. Stehlé, Approx-SVP in ideal lattices with pre-processing, EUROCRYPT, 2019.
- E. A. Pellet-Mary and D. Stehlé, On the hardness of the NTRU problem, ASIACRYPT, 2021.
- Quartl, Matrix pattern gtl3, 2014, File: Matrix pattern qtl3.svg.