Ideal-SVP is Hard for Small-Norm Uniform
Prime ldeals

Joél Felderhoff, Alice Pellet-Mary, Damien Stehlé and Benjamin Wesolowski

INRIA Lyon, ENS de Lyon

Contributions

e New reduction: P~1-ideal-SVP to P-ideal-SVP.

e Application: new distribution of NTRU instances with difficulty
based on wc-ideal-SVP.

1/29

https://eprint.iacr.org/2023/1370

Contributions

e New reduction: P~1-ideal-SVP to P-ideal-SVP.

e Application: new distribution of NTRU instances with difficulty
based on wc-ideal-SVP.

To appear in the proceedings of TCC 2023. Available on:
https://eprint.iacr.org/2023/1370

1/29

https://eprint.iacr.org/2023/1370

Definitions

Lattices

A 2-dimensional lattice

Definition

For by, ..., b, € Z" linearly independent, the lattice spanned by the
basis by,...,b,is L=)",7Z-b; CR".

It is discrete and has a shortest non-zero vector.

Finding any short non-zero vector in £ given the (b;); is hard in general.

2/29

..”...oc
- -
0
.....5'
ﬁo .oa°....
oo'....

ooo'..O.
......oo

o»‘....
.“.....C

° o°....
..00....

o

..o'....

Lattice c
ryptograph
y (toy example). and B,
.. are the basis
of a lattice
/Lo

3/29

Lattice-based cryptography

AN

Lattice cryptography (toy example). B, and By are the basis of a lattice L.

Secure as long as it is hard to find By given B,;.
This problem is the Shortest-Vector-Problem (SVP).

3/29

Lattice-based cryptography

Lattice cryptography (toy example). B, and By are the basis of a lattice L.

Secure as long as it is hard to find By given B,;.
This problem is the Shortest-Vector-Problem (SVP).

Note: £ must be chosen at random.

3/29

Number fields and ldeals

We use the field K = Q[X]/(X" 4+ 1), Ok = Z[X]/(X" + 1) for n = 2",
(K a number field, O its ring of integers).

1/2
The size of an element a € K is ||a|| = (Z,\a,-|2) .

The size of an element is the £>-norm of its Minkowski embedding.

4/29

Number fields and ldeals

We use the field K = Q[X]/(X" 4+ 1), Ok = Z[X]/(X" + 1) for n = 2",
(K a number field, O its ring of integers).

1/2
The size of an element a € K is ||a|| = (Z,\a,-|2>

The size of an element is the ¢>-norm of its Minkowski embedding.

Definition (Ideal)
A set a C K is an ideal if it is discrete, stable by addition and by
multiplication by any element of Ok. It is then a lattice.

Norm of an ideal: N(1) = Vol(/)/v/Ak € Z.

4/29

Ideal inverse and factorization

Let a,b ideals of K, and a € K.
Principal ideal

(a) = {x-a,x € Ox}.

Multiplication and inverse
a-b={>,a b}, a7t ={xeK,x al Ok}
We have that a-a=! = Ok.

Factorization

There exists a set of prime ideals P such that any a C K can be written

a—= H p”p(a)_

peEP

in a unique way

5/29

Given an ideal a C K, find x € a\ {0} with ||x|| <~ - Vol(a)*/“.

Ideal lattices are not typical lattices. E.g., they verify Ai(/) = \g(/).

'[CDPR16, CDW17, PHS19]

6/29

The problem ideal-HSVP

Definition (ideal-HSVP,)
Given an ideal a C K, find x € a\ {0} with ||x|| < v - Vol(a)¥/d.

Ideal lattices are not typical lattices. E.g., they verify Ai(/) = \g(/).

e There are specifics attacks on ideal lattices?.

e Ideals are the simplest examples of module lattices (they are rank-1
modules), used in real world applications (KYBER, DILITHIUM).

e ideal-HSVP is related to other structured lattice problems
(Module-SVP, NTRU, RingLWE).

1[CDPR16, CDW17, PHS19]

6/29

Why small ideal lattices?

Typical lattice basis: O(d?) integers vs Ideal lattice basis: O(d) integers.”

?Images from [Qual4]

7/29

Why small ideal lattices?

Typical lattice basis: O(d?) integers vs Ideal lattice basis: O(d) integers.”

Bitsize of a typical element of a is log(AN(a)).
— We want A (a) = poly(d)9 in order to have small keys.

?Images from [Qual4]

7/29

Why small ideal lattices?

Typical lattice basis: O(d?) integers vs Ideal lattice basis: O(d) integers.”

Bitsize of a typical element of a is log(AN(a)).
— We want A (a) = poly(d)9 in order to have small keys.

Also: faster algorithms.

?Images from [Qual4]

7/29

Worst-case to Average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for | < D with non-negligible probability.

Average-case: "Find the secret key given a random public key".

8/29

Worst-case to Average-case reduction

Worst-case: Solve P for all instance of P (for the worst instance).

Average-case for D: Solve P for | < D with non-negligible probability.

Average-case: "Find the secret key given a random public key".

Two reductions here:

e Worst-case to average case.

e Average case for D; to Average-case for D,.

8/29

Prior Works on ideal-HSVP

Ideal HSVP for inverses
of uniform small primes

Worst-case
Ideal HSVP

[BDPW19]

ideals of large volume

Ideal of NTRU instance]
d : ~ 2
volume g [PS21] with module =~ ¢

Ideal HSVP for uniform]

9/29

Description of our work and motivation

Random version of ideal-HSVP

W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.

Idea: W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

10/29

Description of our work and motivation

Random version of ideal-HSVP
W-ideal-HSVP: solving ideal-HSVP for a uniform element of W.
Idea: W is the set of all public keys (a set of ideals).

Note: there are sets W such that W-ideal-HSVP is easy [BGP22].

We show that P~ !-ideal-HSVP reduces to P-ideal-HSVP.

Two reasons

1. [Gen09]: ideal-HSVP (for all ideals) reduces to P~1-ideal-HSVP,
we complete this reduction.

2. The NTRU reduction from [PS21] works only for integral ideals.

10/29

Prior work: Gentry’s reduction

Two types of ideals: integral a C Ok and fractional: | C K.
(And replete: | = x-a C Kg with x € Kg')

1

If a is integral, a=* is fractional.

Take x < 71 with x ~ A+ (1,...,1)7 with X large, then x - I C Ok and:
s = ideal-HSVP(/) <= x - s = ideal- HSVP(x - /).

11/29

Two types of ideals: integral a C Ok and fractional: | C K.
(And replete: | = x-a C Kg with x € Kg')

L is fractional.

Take x < 71 with x ~ A+ (1,...,1)7 with X large, then x - I C Ok and:
s = ideal-HSVP(/) <= x - s = ideal- HSVP(x - /).

If ais integral, a™

Rounding allows to randomize our ideals (sample random x).
x € 171 is small = x - [has small volume.

In [BDPW?20], rounding is done with large elements (due to LLL).

11/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b~ 1.
Output: x € /\ {0} small.
1: Let x = 1.
2: while b is large do

3: Round b: sample v in b~ let a=v-b C O.

4 Factor a: write a = p7* - ... - p¥ with p; primes. (Quantum)
5 Sample: p; uniformly, and let w = O(pi_l).

6: Update: x < w-x, b < (w)-b.

7: Return x

The rounding step ensure that p; is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b~ 1.
Output: x € [\ {0} small.
1: Let x = 1.
2: while b is large do
3: Round b: sample v in b~ ! let a=v-b C O.
Factor a: write a = p7* - ... - p¥ with p; primes. (Quantum)

4
5: Sample: p; uniformly, and let w = O(pi_l).
6 Update: x < w-x, b+ (w)-b.

7

. Return x

The rounding step ensure that p; is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b1
Output: x € /\ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b~ let a=v-b C O.

4 Factor a: write a = pi* - ... - p¥ with p; primes. (Quantum)
5 Sample: p; uniformly, and let w = O(pi_l).

6: Update: x < w-x, b < (w)-b.

7: Return x

The rounding step ensure that p; is uniform in the set of prime ideals and
then we can use O. (In fact we have to use rejection sampling.)

12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b1
Output: x € /\ {0} small.

1: Let x = 1.

2: while b is large do

3: Round b: sample v in b~ let a=v-b C O.

4 Factor a: write a = p7* - ... - p¥ with p; primes. (Quantum)
5 Sample: p; uniformly, and let w = O(p; h).

6: Update: x < w-x, b < (w)-b.

7: Return x

The rounding step ensure that p; is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b~ 1.
Output: x € /\ {0} small.
1: Let x = 1.
2: while b is large do
3: Round b: sample v in b~ let a=v-b C O.
Factor a: write a = p7* - ... - p¥ with p; primes. (Quantum)

4
5: Sample: p; uniformly, and let w = O(pi_l).
6 Update: x «+ w-x, b+ (w) - b.

7

. Return x

The rounding step ensure that p; is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Warming up: Gentry’s reduction [Gen09]

The oracle O solves ideal-HSVP for p~! with p uniform small prime.

Algorithm 2.1 Outline of the reduction of [Gen(9]

Input: An ideal / = b~ 1.
Output: x € /\ {0} small.
1: Let x = 1.
2: while b is large do

3: Round b: sample v in b~ let a=v-b C O.

4 Factor a: write a = p7* - ... - p¥ with p; primes. (Quantum)
5 Sample: p; uniformly, and let w = O(pi_l).

6: Update: x < w-x, b < (w)-b.

7: Return x

The rounding step ensure that p; is uniform in the set of prime ideals and

then we can use O. (In fact we have to use rejection sampling.)
12/29

Sampling ideals

How would you sample a big prime number in [A, B]?

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling
Sample N uniform in [A, B] until it is prime, then output it.
— Not fitted our case, more on that later.

13/29

How would you sample a big prime number in [A, B]?

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling
Sample N uniform in [A, B] until it is prime, then output it.
— Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A, B]. Factor N =[] p{" and output a random
pi € [/4, f;].

— Need rejection sampling: 2 more frequent than 7919.

— It really looks like what we did in Gentry's reduction.

13/29

How would you sample a big prime number in [A, B]?

You are not allowed to pre-compute the set of primes numbers in [A, B]!

Idea 1: rejection sampling
Sample N uniform in [A, B] until it is prime, then output it.
— Not fitted our case, more on that later.

Idea 2: factoring

Sample N uniform in [A, B]. Factor N =[] p{" and output a random
pi € [/4, f;].

— Need rejection sampling: 2 more frequent than 7919.

— It really looks like what we did in Gentry's reduction.

We are going to use Idea 2 in order to sample prime ideals with a
trapdoor.

13/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm
Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].

1: repeat

2 Sample a small Gaussian x in Ok.

3 Factor (x): write (x) = pi* ... p3* with p; primes.
4: until {p,-, N(p,) S [A, B]} #* 0.

5. Pick: p < {p;, N(p;) € [A, B]} uniformly.

6: Return (p, x)

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm
Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].

1: repeat

2 Sample a small Gaussian x in Ok. (Need a good basis of Ok)

3 Factor (x): write (x) = pi* - ... - p3* with p; primes. (Quantum)
4: until {p,-, N(p,) S [A, B]} =5 0.

5: Pick: p < {p;, N(p;) € [A, B]} uniformly. (Rejection sampling here)
6: Return (p, x)

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].
repeat
Sample a small Gaussian x in Ok. (Need a good basis of O)
Factor (x): write (x) = pi* ... - p with p; primes. (Quantum)
until {p;, NV(pi) € [A, B]} #0.
. Pick: p < {p;, N(p;i) € [A, B]} uniformly. (Rejection sampling here)
: Return (p, x)

@ e ®W

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm
Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].

1: repeat

2 Sample a small Gaussian x in Ok. (Need a good basis of O)

3 Factor (x): write (x) = pi* - ... - p3* with p; primes. (Quantum)
4: until {p,-, N(p,) S [A, B]} =5 0.

5: Pick: p < {p;, N(p;) € [A, B]} uniformly. (Rejection sampling here)
6: Return (p, x)

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm
Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].

1: repeat

2 Sample a small Gaussian x in Ok. (Need a good basis of O)

3 Factor (x): write (x) = pi* - ... - p3* with p; primes. (Quantum)
4: until {p,-, N(p,) S [A, B]} =5 0.

5: Pick: p < {p;, N(p;) € [A, B]} uniformly. (Rejection sampling here)
6: Return (p, x)

14/29

Sampling uniform prime ideals with trapdoor [PS21]

Algorithm 3.1 SampleWithTrap algorithm

Input: 2 < A < B integers
Output: (p, x) such that x € p and N (p) € [A, B].

1: repeat

2 Sample a small Gaussian x in Ok.

3: Factor (x): write (x) = pi* ... p3* with p; primes.
4: until {p;, N(p,) € [A, B]} # 0.

5. Pick: p < {p;, N(p;) € [A, B]} uniformly.

6: Return (p, x)

Theorem

This algorithms runs in quantum poly-time and outputs p almost
uniform in Pa g along with small x € p \ {0}.

14/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b
Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)Y9.

Sample x <= U (Boo(r) (1)

Return b = x - [}

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm
Output: An ideal b

Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)Y9.

Sample x <= U (Boo(r) (1)

Return b = x - [}

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b
Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(C) - u-q/N(q)*/9.

Sample x <= U (Boo(r) (1)

Return b = x - |71

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b
Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | =exp(¢) - u-q/N(q)*?

Sample x <= U (Boo(r) (1)

Return b = x - [}

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b
Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u - q/N(q)*/.

Sample x <= U (B (r)N 1)

Return b = x - [}

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

Arakelov ideal sampling [BDPW20, Boe22]

Allows to sample uniform ideals:

Algorithm 3.2 ArakelovSampling algorithm

Output: An ideal b
Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(C) - u-q/N(q)*/9.
Sample x <= U (Boo(r) (1)

Return b = x - /1

@ s PR

ArakelovSampling output uniform integral ideals of norm ~ r? for
r = 20(d),

15/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u - q/N(q)*/?

Sample x <= U (Boo(r) (N 1).

Return b = x - /7!

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal band y € b~!.

Let g an uniform small prime ideal.

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(C) - u-q/N(q)*/9

Sample x <= U (Boo(r) (N 1).

Return b = x - /71

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal band y € b~!.

Let (q, vq) ¢ SampleWithTrap(:). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(C) - u-q/N(q)*/9

Sample x <= U (Boo(r) (N 1).

Return b = x - /71

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal band y € b~!.

Let (q,vq) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u - q/N(q)*/?

Sample x <= U (Boo(r) (N 1).

Return b = x - /7!

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / = exp(¢) - u-q/N(q)t/?

Sample x <= U (Boo(r) (N 1).

Return b = x - /7!

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal band y € b~!.

Let (q,vq) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u- q/N(q)/¢ and s5; = exp(C) - u - s/ N (q)*/9 € 1.
Sample x <= U (Boo(r) (N 1).

Return b = x - [}

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal band y € b~!.

Let (q,vq) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)/9 and s5; = exp(C) - u - s/ N(q)*/9 € I.
Sample x <= U (Boo(r) (N 1).

Return b = x - [}

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)/9 and s5; = exp(C) - u - s/ N(q)*/9 € I.
Sample x <= U (Boo(r) (N 1).

Return b = x - /7!

@ 2 ® P E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)/¢ and s5; = exp(C) - u - s/ N(q)*/9 € I.
Sample x <= U (Boo(r) (N 1).

Return b =x-/"tand y = x5

@ ®P®E

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)/¢ and s5; = exp(C) - u - s/ N(q)*/9 € I.
Sample x <= U (Boo(r) (N 1).

Returnb=x-/"tandy=x"1.g.

@ ®WE

Drawback

The element y = x~1 - 5 can be very large compared to A/(b—1)%/¢.

16/29

What if we want to sample with a trapdoor inside?

We modify our algorithm to output some small element in b~!

Algorithm 3.3 ArakelovSampling’ algorithm

Output: Anideal b and y € b~ 1.

Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | = exp(¢) - u-q/N(q)/¢ and s5; = exp(C) - u - s/ N(q)*/9 € I.
Sample x <= U (Boo(r) (N 1).

Returnb=x-/"tandy=x"1.g.

@ ®WE

Drawback

The element y = x~1 - 5 can be very large compared to A/(b—1)%/¢.
— This happens if x is unbalanced

16/29

Some details on ArakelovSampling

lIxll,,

1. We pick I ~ q/N(q)*/“.
2. We sample x <= U (Boo(r) N 1).
3. We return b = x - [71.

Figure 2: Bo.(r)

Necessary for uniform b

1. |[Bs(r)(!| do not depend on /
2. Vol(Log(Boo(r)) N {>_ x; = t}) is ~ constant for t € [A, B].

17/29

Some details on ArakelovSampling

lIxll,,

1. We pick I ~ q/N(q)*/“.
2. We sample x <= U (Boo(r) N 1).
3. We return b = x - [71.

Figure 2: Bo.(r)

Necessary for uniform b

1. |[Bs(r)(!| do not depend on /
2. Vol(Log(Boo(r)) N {>_ x; = t}) is ~ constant for t € [A, B].

Drawback

There are x € Boo(r) with ||x71|| very
large.

17/29

Main contribution:
P-1ideal-SVP to P-ideal-SVP

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

. Let (q,vq) < SampleWithTrap(-).

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / =exp({)-u-q-aand sy =exp(¢)-u-Sq-5q € 1.

Sample x <> U (Bag()!) using s/ .

Return (b=x /"1y =x"1-5 v,

LA R

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

: Let (q, vy) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / =exp({)-u-q-aand sy =exp(¢)-u-Sq-5q € 1.

Sample x <> U (Bag()!) using s/ .

Return (b=x /"1y =x"1-5 v,

LA R

(Normalization factors omitted)

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

. Let (q, vy) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / =exp({)-u-q-aand sy =exp(¢)-u-Sq-5q € 1.

Sample x <> U (Bag()!) using s/ .

Return (b=x /"1y =x"1-5 v,

LA R

(Normalization factors omitted)

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

. Let (q, vy) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let | =exp(¢)-u-q-aand s, =exp(C)-u-sq-5q € 1.

Sample x <> U (Bag()!) using s/ .

Return (b=x /"1y =x"1-5 v,

LA R

(Normalization factors omitted)

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

. Let (q, vy) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / =exp({)-u-q-aand sy =exp(¢)-u-Sq-5q € 1.

Sample x <= U (Bag()!) using s/ .

Return (b=x /"1y =x"1-5 v,

LA R

(Normalization factors omitted)

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

. Let (q, vy) < SampleWithTrap(-). (Quantum)

Sample a small continuous Gaussian ¢ and a uniform rotation u.
Let / =exp({)-u-q-aand sy =exp(¢)-u-Sq-5q € 1.

Sample x <> U (Bag()!) using s/ .

Losievg)

LA R

Return (b= x-/71y = x~

(Normalization factors omitted)

18/29

First contribution: Generalized Arakelov ideal sampling

We generalize the approach of [BDPW20, Boe22]:

Algorithm 4.1 SampleIdealy, . algorithm

Input: a an ideal, s, € a small, B4 g C Kr a well chosen set.
Output: (b,y) such that y € (b-a)~L.

1:
2: Sample a small continuous Gaussian ¢ and a uniform rotation u.
3 Let | =exp(¢)-u-q-aand s, =exp(()-u-sq-5. € 1.

4:

5 Return (b= x- /71y = x~

Let (g, vq) ¢ SampleWithTrap(:).

Sample x <= U (Ba,g()!) using s/ .
1. i - Vg)

Theorem
Let (b,y) = Sampleldealy, (a,Sq, A, B).

If Ba,g is well chosen then b is almost uniform in Za g and y is small.

18/29

What does " well chosen” means?

e |Bag()a| do not depend on a (too much).
e Vol(Log(Ba,g) (N {D_ xi = t}) is constant for t € [A, B].

e |ts elements must be balanced.

Balanced elements (o [Vinkowskd crnbedding)
x € K is balanced if for all /,

1/d
1/n < x/[[x/¢ <n.
j

This is the same as saying x ~ N(x)/9 - (1,...,1).

19/29

What does " well chosen” means?

e |Bag()a| do not depend on a (too much).
e Vol(Log(Bag)({D_xi = t}) is constant for t € [A, B.

e |ts elements must be balanced.

Balanced elements (o [Vinkowskd crnbedding)
x € K is balanced if for all /,

1/d
1/n < x/[[x/¢ <n.
j

This is the same as saying x ~ N(x)/9 - (1,...,1).

19/29

What does " well chosen” means?

e |Bag()a| do not depend on a (too much).
e Vol(Log(Ba,g) (N {D_ xi = t}) is constant for t € [A, B].

e |ts elements must be balanced.

Balanced elements (o [Vinkowskd crnbedding)
x € K is balanced if for all /,

1/d
1/n < x/[[x/¢ <n.
j

This is the same as saying x ~ N(x)/9 - (1,...,1).

19/29

What does " well chosen” means?

e |Bag()a| do not depend on a (too much).
e Vol(Log(Ba,g) (N {D_ xi = t}) is constant for t € [A, B].

e |ts elements must be balanced.

Balanced elements (o [Vinkowskd crnbedding)
x € K is balanced if for all /,

1/d
1/n < x/[[x/¢ <n.
j

This is the same as saying x ~ N(x)/9 - (1,...,1).

In [BDPW20]: B (r): verify points 1 and 2 but not 3!

19/29

Our shape

Reminder: conditions for being well chosen:

o |Bag[)al do not depend on a (too much).
e Vol(Log(Bag) N {>_ xi = t}) is constant for t € [A, B].

e Its elements must be balanced.

20/29

Our shape

Reminder: conditions for being well chosen:

e |Bag()a| do not depend on a (too much).
e Vol(Log(Bag) N {>_ xi = t}) is constant for t € [A, B].

e Its elements must be balanced.

By 5= {x € Ke, IN(x)| € [ABI,]

e =ou0)

20/29

Our shape

Reminder: conditions for being well chosen:

e |Bag()a| do not depend on a (too much).
e Vol(Log(Bag)({D_xi = t}) is constant for t € [A, B].

e Its elements must be balanced.

Bag= {x € Kr, IN(x)| € I[A, B],

< log(?/)}

2

20/29

Our shape

Reminder: conditions for being well chosen:

e |Bag()a| do not depend on a (too much).
e Vol(Log(Bag) N {>_ xi = t}) is constant for t € [A, B].

e Its elements must be balanced.

Blo = {x€ ke, W(l€ABL

_/X
N—

Log (37

20/29

Our shape

Reminder: conditions for being well chosen:

e |Bag()al do not depend on a (too much).
e Vol(Log(Bag) N {>_ xi = t}) is constant for t € [A, B].

e Its elements must be balanced.

Bag = {X € Kr, |N(x)| € [A,B],

< log(?/)}

2

20/29

Reminder: SampleIdealy, .

The algorithm Sampleldealy, . :

1. Takes as input a C Ok and s, € a small.

2. Output b C Ok uniform and y € b= - a1 small.

21/29

Reminder: SampleIdealy, .

The algorithm Sampleldealy, . :

1. Takes as input a C Ok and s, € a small.

2. Output b C Ok uniform and y € b= - a1 small.

Now if we get in s, € b small, we have that s - y is small and

ss-yeb-bl.al=q"1

21/29

Reminder: SampleIdealy, .

The algorithm Sampleldealy, . :

1. Takes as input a C Ok and s, € a small.

2. Output b C Ok uniform and y € b= - a1 small.

Now if we get in s, € b small, we have that s - y is small and

ss-yeb-bl.al=q"1

Sampleldeal, B

ideal-HSVP(a) + ideal-HSVP(b) — %5 ideal- HSVP(a 1)

21/29

Our P!

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~! with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, g(p,sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
~—

small small

22/29

Our P 1

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~1 with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, g(p,sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
~—

small small

22/29

Our P 1

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~! with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, gz(p.sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
~—

small small

22/29

Our P 1

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~! with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, g(p,sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
~—

small small

22/29

Our P 1

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~! with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, g(p,sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
~—

small small

22/29

Our P 1

-ideal-SVP to P-ideal-SVP reduction

The oracle O solves ideal-HSVP for p uniform prime of norm in [A, B].

Algorithm 4.2 Outline of the P~1-ideal-SVP to P-ideal-SVP reduction

Input: An ideal / = p~! with p uniform prime of norm in [A, B].
Output: x € /\ {0} small.

@ e W E

: Let s, = O(p). (p is uniform)
Let (b, y) = SampleIdeal, g(p,sp)
if b is not prime. (with probability (poly -px)~!) then
Fail.
Let s, = O(b).
Return s, - y .
e

small small

22/29

A note on rejection Sampling

We fail if b is not prime: we have to do rejection sampling.
The expected number of rejection is

Zasl _

Pas| pk = Ress—1 (k(s).

This quantity can be exponential for some fields (E.g., multiquadratics).

23/29

A note on rejection Sampling

We fail if b is not prime: we have to do rejection sampling.
The expected number of rejection is

Zasl _

Pas| pk = Ress—1 (k(s).

This quantity can be exponential for some fields (E.g., multiquadratics).

Also, we lack good approximations for small A, B.

23/29

Application to NTRU

NTRU cryptosystem

Proposed first in [HPS96]. In NIST'’s post-quantum standardization
process: NTRU and NTRUPrime.

Let g be an integer.

Definition (NTRU,)

Let f,g € Ok with coefficients < /g and f invertible mod g.
Given h € Ok such that - h = g mod g, find a small multiple of (f, g).

Advantages:

e Small keys.

e Fast encryption/decryption (much faster than RSA).
e Old.

[HPS96]: J. Hoffstein, J. Pipher, J. Silverman. ANTS 1998.

24/29

NTRU instances from ideal-HSVP [PS21]

Karp reduction from [PS21].

Ideal SVP NTRU
a=(z)Ok. q~ V24
Vol(a) = V. h=|q/z].

SVP(a) = s (g,f)=(s,s-{q/z})

25/29

NTRU instances from ideal-HSVP [PS21]

Karp reduction from [PS21].

Ideal SVP NTRU

=(z)ﬂ(’)K g~ V24,
Vol(= h=q/z].
SVP(a) = (8.f)=(s;s-{a/z})

Distribution of NTRU instances (DNTRU): sample p uniform small
prime and apply the reduction.

Consequence: worst-case based distribution for NTRU

NTRU for DNTRU > D_jdeal-SVP > we-ideal-SVP.

25/29

Wrapping up

Contributions and open problems

Contributions:

e We show that solving ideal-HSVP on average over inverse of primes
is as hard as solving ideal-HSVP on average over primes.

e The new reduction gives an NTRU distribution based on a
worst-case problem for polynomial modulus.

26/29

Contributions and open problems

Contributions:

e We show that solving ideal-HSVP on average over inverse of primes
is as hard as solving ideal-HSVP on average over primes.

e The new reduction gives an NTRU distribution based on a
worst-case problem for polynomial modulus.

Open problems:

e Can we have such reduction without factoring?
e Can we get rid of the cost in px?

e Can we have more precise approximates for |Za g|/|Pa,g|?

26/29

Thank you for your attention

Any question?

27/29

References i

@ K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski, Random
self-reducibility of Ideal-SVP via Arakelov random walks, CRYPTO,
2020.

@ K. Boudgoust, E. Gachon, and A. Pellet-Mary, Some easy instances
of Ideal-SVP and implications on the partial Vandermonde knapsack
problem, CRYPTO, 2022.

@ K. de Boer, Random walks on arakelov class groups., Ph.D. thesis,
Leiden University, 2022, Available on request from the author.

@ R. Cramer, L. Ducas, C. Peikert, and O. Regev, Recovering short
generators of principal ideals in cyclotomic rings, EUROCRYPT
2016, 2016.

@ R. Cramer, L. Ducas, and B. Wesolowski, Short Stickelberger class
relations and application to Ideal-SVP, EUROCRYPT, 2017.

28/29

References ii

EN Gentry, A fully homomorphic encryption scheme, Ph.D. thesis,
Stanford University, 2009.

@ A. Pellet-Mary, G. Hanrot, and D. Stehlé, Approx-SVP in ideal
lattices with pre-processing, EUROCRYPT, 2019.

@ A. Pellet-Mary and D. Stehlé, On the hardness of the NTRU
problem, ASIACRYPT, 2021.

@ Quartl, Matrix pattern qtl/3, 2014, File: Matrix pattern
qtl3.svg.

29/29

	Definitions
	Prior work: Gentry's reduction
	Sampling ideals
	Main contribution: P-1-ideal-SVP to P-ideal-SVP
	Application to NTRU
	Wrapping up

