
M1 Internship:

Homological product code and weight of random tensors

Joël Felderho�

ENS de Lyon

Internship realized under the supervision of Péter Vrana

at QMATH, University of Copenhagen

1 Introduction

1.1 Context, motivation and problematics

Quantum computer desing is a current �eld of research. To build such computers would lead to the
ability to solve problems in less time than with classical computers. For example, the discrete logarithm
problem is solved in linear time with quantum computation while the best classical algorithm solving
it is exponential.

A big di�erence between classical and quantum computers is that in the classical case, no error
is supposed to append during computations, which is not the case in quantum computation. The
problem of the resiliant storage and transmission is also a problem with quantum computers, as in the
classical case. In order to build quantum computers, good procedures to detect and correct errors are
then needed. The problem of �nding equivalent of error correcting codes in the quantum case is then
a current and active �eld of research.

The problem is that if the case of classical error correcting code is well studied and known, the case
of quantum code still has open problems. It was shown by Calderbank, A Robert and Shor [4] that
good Quantum Error Correcting Codes (QECC) exists (i.e. codes which encode n logical qubits into
O(n) physical qubits and are able to correct O(n) errors), but it is not known by now whether good
Low Density Parity Check (LDPC) QECC exists. As a matter of fact, the best codes known by now
have either distance O(n) but weight O(

√
n) [3] or weight O(1) but distance O(

√
n) [10]. Researchers

are looking for LDPC code because the weight of a code is linked with the number of quantum gates
used to implement it, and then with the price and the complexity of implementing it in an actual
quantum computer.

In 2013, Bravyi and Hastings published �Homological Product Code� [3]. In that paper, they give
a proof of the existence of [[n,O(n), O(n), O(

√
n)]] codes, by making the homological product of two

random codes. The goal of my internship was to study whether this construction could be generalized to
the product of 3 (or more) random codes, which is expected to give raise to [[n,O(n), O(n), O(3

√
n)]] (or

[[n,O(n), O(n), O(k
√
n)]]) codes. This construction was suggested in the paper of Bravyi and Hastings,

but they noted that it seems more di�cult than in the two factor case.
As the proof of Bravyi and Hastings is related to the distribution of the weight of tensor in certain

orbit of 2-tensors under the action of GL2
n, I studied the action of GL3

n over the space of 3-tensors,
examined some invariants and studied how the weight of random tensors behave in function of their
orbit under the action of this group.

1.2 My internship

I did my internship under the supervision of Péter Vrana, in the QMATH group at the University of
Copenhagen. The internship lasted 12 weeks.

I spent the �rst time of my internship acquiring the knownledge needed to understand the subject. I
worked on the general theory of QECC and stabilizer codes, and I studied a part of the graph homology
theory, in order to link the article's theoretical construction to objects I understand better.

1

Then, my second work was to understand the paper of Bravyi and Hastings, and to link it with
the knowledge acquired before.

The third part of the internship was the longest. During that part I tried to have a deeper
understanding of the proof of Bravyi and Hastings in order to see which part of it could be generalized
and what part were more di�cult to adapt to the multiple factor case. Over that period, I had the
opportunity to attend the Simons Program: QMath Masterclass on Tensors: Geometry and Quantum
Information at the department, where my tutor and several expert of tensor theory had lectures. It
provided me some insights about quantum information theory and (besides giving me culture on a
mathematical object I did not know) it gave me more ease to work in my subject.

1.3 Organisation of this report

In the �rst part of this report (Section 2) I will make some de�nitions and statements useful to
understand the objective behind the objects we are going to study. I will introduce what a QECC is
and some standard constructions on them. Once this will be de�ned, I will, in Section 3, get into the
main subject of the internship, the proof of the paper of Bravyi and Hastings. I will de�ne what the
homological product code is, and make a sketch of the proof of [3]. Then I will present the di�erent
directions I took to try to generalize this proof in Section 4.

My generalisations attemps are presented in two ways. First I will explain my study of di�erent
tensors invariants (4.1) and after that I will emphase a part of my work about the link between the
weight of a matrix and its rank (4.2).

1.4 Special thanks

I would like to thank Péter Vrana for accepting of being my tutor during the 3 months of this internship,
and for his help and support during it. Thanks to Danaé, Solène, Louis and my parents for their huge
help and support during the everyday life abroad.

Thanks to Marc and Nicolas for the relecture of my report.

2 Quantum error correcting codes

2.1 Basics about quantum mechanics

In quantum mechanics, states of physical systems are modeled by norm 1 elements of a Hilbert space
(that is to say a complex vector space endowed with an Hermitian inner product). The dimension of
this space is the number of �degrees of freedom� of the system. For example, the spin of an electron
can be up or down, then this quantity will be modelised as a normalized element of C2.

De�nition-Proposition 2.1.1. [2, A-II-�3.1] Take A and B two �nite dimensional F vector spaces
(with F a �eld), with basis (ai)i=1...n and (bi)i=1...m.

The tensor product A ⊗ B is the vector space spanned by the rank 1 tensors (a⊗ b)a∈A
b∈B

, subject

to the following relations, for all a, a′ ∈ A, b, b′ ∈ B, λ ∈ F :

• λ(a⊗ b) = (λa)⊗ b = a⊗ (λb).

• a⊗ b+ a′ ⊗ b = (a+ a′)⊗ b

• a⊗ b+ a⊗ b′ = a⊗ (b+ b′)

It is a �nite dimensional vector space of dimension nm whose basis is (ai ⊗ bj) i=1...n
j=1...m

.

Remark 2.1.2. [2, A-II-�3.8] This construction is (up to isomorphism) associative: (A ⊗ B) ⊗ C =
A⊗ (B ⊗ C) = A⊗B ⊗ C.

2

If we have two systems, one in the Hilbert space H1 the other in H2, and we want to model their
interaction, we are going to consider the overall system to be an element of the product space H1⊗H2.
One could see that intuitively as if the �rst system has n degrees of freedom and the second m degrees
of freedom, then the product system has nm degrees of freedom.

As our goal is to build a quantum computer, we are interested in how to create �bits� from physical
systems. A qubit is a system with 2 degrees of freedom. The basis of its Hilbert space will be denoted
by |0〉 , |1〉.

As we will be interested in systems with a certain number of qubits, we will consider the tensor
product of n 2 dimensional Hilbert spaces. In the following, I will denote E = (C2)

⊗n
. Its basis is

(|a1a2 . . . an〉)(ai)∈Zn2 .
The computations on qubits are done by unitary operators (linear operators that preserve the

norm). For example, the controled-NOT (CNOT) gate acts on a system of 2 qubits like this:

F |00〉 = |00〉 , F |01〉 = |01〉
F |10〉 = |11〉 , F |11〉 = |10〉

The CNOT gate makes the qubits interact with each other. We will use a lot the local actions
on qubits.

De�nition 2.1.3. Take A and B two �nite dimensional F vector spaces (with F a �eld), with basis
(ai)i=1...n and (bi)i=1...m. Let M,N ∈ Hom(A) × Hom(B) two operators on A and B. The local

operator M ⊗N is de�ned to be (for all a ∈ A, b ∈ B):

(M ⊗N)(a⊗ b) = Ma⊗Nb

These actions can be understood as operations performed on only subparts of the system. For
example, if one studies the interaction between two electrons, then a local action would be an operation
performed in each electrons without interactions. Those operations are important because they are
cheaper to implement than the global one. More generally, transformations acting on only a few qubits
are experimentally more accessible than global ones, and are su�cient to build any transformations on
an arbitrary large number of qubits.

2.2 Quantum error correcting codes

The idea behind the quantum error correction is to take k qubits, called logical qubits (that is to say
the space (C2)⊗k), and to encode them into a subspace of (C2)

⊗n
.

De�nition 2.2.1. A Quantum Error Correcting Code (QECC) is a subspace of E.

Before de�ning our �rst examples of QECC, I have to state some de�nitions. First, we want to
know what the errors that can occurs are.

De�nition 2.2.2. The Pauli matrices are:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
and Y = XZ =

(
0 −1
1 0

)
The nth Pauli Group is the (multiplicative) group:

Pn =
{
±Xa1Zb1 ⊗ . . .⊗XanZbn , (ai)i=1...n, (bi)i=1...n ∈ Z2

}
This group acts on E by left multiplication.

The action of Pauli matrices have easy interpretation in term of qubit action:

• The action of X is a bit �ip: X |0〉 = |1〉 , X |1〉 = |0〉.

• The action of Z is a phase �ip: Z |0〉 = |0〉 , Z |1〉 = − |1〉.

The Pauli group encodes the local actions on qubits. An important property of this group is that it
spans the space of operators on E. One can prove that if two errors can be corrected by a QECC, then
any linear combination of them can be corrected, which implies that restricting the study of errors to
Pauli errors does not lose the generality of error correction.

3

2.3 Stabilizer codes

As the Pauli group encodes some actions that would modify the result of our computations (bit �ip
for example), it is legitimate to try �nd subspaces of E that are invariant by the action of some of the
elements of the Pauli group. When such kind of space has been found, one is able to encode qubits on
them in order to protect them from errors.

An important class of QECC are the stabilizer codes, which are the quantum analogs of classic
linear codes.

De�nition 2.3.1. Let S be a subgroup of Pn. Then the stabilizer code of S is the space of the
elements of E invariant by the action of S : CS ≡ ES.

In the following, I will denote by I ∈Pn the operator I ⊗ · · · ⊗ I.

Proposition 2.3.2. Take S a subgroup of Pn. Then if −I ∈ S, then CS is trivial, and furthermore
if −I /∈ S, then

dim(CS) =
2n

|S|
(1)

Proof. First, we can note that tr(A⊗B) = tr(A) tr(B) and tr(X) = tr(Z) = tr(Y) = 0.
Hence if P ∈Pn, if P = I, tr(P) = 2n, if P = −I, tr(P) = −2n. Else, tr(P) = 0.
The theory of representations of �nite groups (see [9] for example), gives us that

dim(CS) = dim(ES) =
1

|S|
∑
s∈S

tr(s)

Of course, I ∈ S. Hence if −I ∈ S, the sum is equal to 2n − 2n + 0 = 0, and then CS is trivial. Else,
this sum is equal to 2n which gives the result.

Direct computations show the following properties:

Proposition 2.3.3.

• X2 = Z2 = I, Y 2 = −I.

•
(⊗n

i=1X
aiZbi

) (⊗n
i=1X

a′iZb
′
i

)
= (−1)a'·b

⊗n
i=1X

ai+a
′
iZbi+b

′
i where a' ·b =

∑n
i=1 a

′
ibi and every

addition is performed in Z2.

• ∀P ∈Pn, P
−1 = ±P

Corollary 2.3.4. [Pn,Pn] = {I,−I}

Proof. Take P =
⊗n

i=1X
aiZbi , Q =

⊗n
i=1X

a′iZb
′
i ∈P2

n.

[P,Q] = PQP−1Q−1 = ±PQPQ = ±

(
±

n⊗
i=1

Xai+a
′
iZbi+b

′
i

)2

= ±
n⊗
i=1

X2(ai+a
′
i)Z2(bi+b

′
i) = ±

n⊗
i=1

I = ±I

Hence, the condition for a stabilizer code to be non-trivial can be rephrased in the following way.

Proposition 2.3.5. If a subgroup S of Pn gives rises to a nontrivial code, then it is comutative.

Proof. With Proposition 2.3.2, we have that CS is nontrivial i� −I /∈ S. So if CS nontrivial, as
[S, S] ⊂ [Pn,Pn], [S, S] = {I}, hence S is commutative.

4

This property enables us to think about stabilizer codes in terms of subgroups of (Pn/{±I}, ·) '
(F2n

2 ,+), that is to say in terms of subspaces of F2n
2 .

More precisely, set
〈·, ·〉 : Pn ×Pn −→ F2

x, y 7−→

{
0, if xy = yx

1, if xy = −yx
This map is a homomorphism in both arguments, invariant by multiplication of one of its arguments
by −I, so it factors through ((Pn/{±I})2, ·) ' (F2n

2 ,+).
The isomorphism between (Pn/{±I}, ·) and (F2n

2 ,+) is done in the following way:

n⊗
i=1

XaiZbi 7→ (a1, . . . , an, b1, . . . , bn)

With this isomorphism, seen as a bilinear form in F2n
2 , the matrix of 〈·, ·〉 is given by Σ =

(
0 In
In 0

)
.

De�nition-Proposition 2.3.6. A bilinear form f : E2 −→ F is said to be symplectic if

1. It is non-degenerate: ∀u ∈ E, (∀v ∈ E, f(u, v) = 0 =⇒ u = 0)

2. It is alternating: ∀u ∈ E, f(u, u) = 0

Then 〈·, ·〉 : (F2n
2)

2 −→ F2 is symplectic.
If f : E2 −→ F is a symplectic form and F is a subspace of E, one can de�ne

F̂ ≡ {y ∈ E,∀x ∈ F f(x, y) = 0}

A subspace F of E is said to be totally isotropic for f if F ⊂ F̂ .

It turns out that totally isotropic subspaces of F2n
2 for the bilinear map 〈·, ·〉 are very important in

the study of stabilizer codes. In the following, when I will talk about a totally isotropic subspace, it
will mean totally isotropic for 〈·, ·〉.

Proposition 2.3.7. Every commutative subgroup S of Pn induces a totally isotropic subspace of F2n
2 .

Conversely, every totally isotropic subspace of F2n
2 is the (non unique) image of a subgroup S of Pn

such that −I /∈ S.

Proof. If H is a commutative subgroup of Pn, then ∀g, h ∈ H, 〈u, v〉 = 0 so the embedding of H in
F2n
2 is totally isotropic.
Conversely, take V a totally isotropic subspace of F2n

2 . Let e1, . . . , es be a basis of V in Pn/{±I},
let f1, . . . , fs be arbitrary preimages in Pn of e1, . . . , es. Then ∀i, j〈fi, fj〉 = 〈ei, ej〉 = 0 so fifj = fjfi
hence the group generated by f1, . . . , fs is commutative. Let us call it S.

If −I ∈ S, then there exist a1, . . . as ∈ Fs2 not all equal to zero such that −I =
∏
i f

ai
i , then when

we embbed this equality in F2n
2 , we get

∑
i aiei = 0, with the ai not all equal to zero which is impossible

since (ei) is a basis of V , and hence is linearly independant.
The image of this group in F2n

2 is clearly V , which concludes the proof.

Proposition 2.3.8. If S1 and S2 are two subgroup of Pn obtained this way, then there exist g ∈Pn

such that S1 = gS2g
−1

Proof. Let H be a totally isotropic subspace of E. Let H ⊂ L be a maximal subspace of E such that
〈·, ·〉 is zero on it. There is a basis (e1, . . . es, es+1, . . . el, f1, . . . fk) of E such that e1, . . . , es is a basis of
H, e1, . . . , el a basis of L with 〈ei, fj〉 = δij , 〈ei, ej〉 = 〈fi, fj〉 = 0 (this is proven by a slightly modi�ed
version of the Gram�Schmidt process).

Take g1, . . . , gs be the generating set of a Pauli subgroup S. The other possible preimage of gi
inside Pn is −gi. Let's say that I change the sign of one of the gi (say the sign of g1), and take S′ this
new subgroup. Take h a preimage of f1, then I claim that S′ = hSh−1.

Take i ≥ 2, then 〈h, gi〉 = 〈f1, gi〉 = 0 then hgih
−1 = gi.

〈h, g1〉 = 〈f1, g1〉 = 1, so hg1h
−1 = −g1.

5

Those properties show that to study stabilizer subgroup of Pn is equivalent to study isotropic
subspaces of F2n

2 .

De�nition 2.3.9. A stabilizer code CS is said to be an [[n, k]]-code if it encodes k (logical) qubits into
n (physical) qubits, that is to say if it is a subspace of (C2)

⊗n
of dimension 2k.

Note that this de�nition is valid even if one is not talking about stabilizer codes. As in the classical
case, it is simple to give a de�nition of the distance of a stabilizer code.

If we take a code de�ned by a subspace V of F2n
2 , it can be shown ([7, Theorem 10.8]) that every

error not in V̂ \V can be properly detected and corrected. The interesting errors are then the elements
of the Pauli group de�ned by the elements of V̂ \ V .

De�nition 2.3.10. Let C be an [[n, k]] stabilizer code given by a totally isotropic subspace V of F2n
2 .

V is called the set of recoverable errors.
C is said to have distance d (then one will say C is [[n, k, d]] code) if one have d ≤ minv∈V̂ \V |v|.
d(C) is de�ned as the largest d such that C is a [[n, k, d]] code.

A simple way to create stabilizer QECC is to use the fact that F2n
2 ≡ Fn2 × Fn2 , and to take two

(n, k)2 classical linear code CX , CZ , the �rst in order to correct bit �ip errors, the second to correct
phase �ip errors.

De�nition-Proposition 2.3.11. Take CX , CZ two linear classical code encoding respectively k1 and
k2 bits into n bits (that is to say CX -resp CZ- is a subspace of Fn2 with dimension k1 -resp k2-), and
such as CX ⊂ (CZ)⊥ (or equivalently CZ ⊂ (CX)⊥), then the space C ≡ CX⊕CZ is a totally isotropic
subspace of F2n

2 of dimension k1+k2, and then the stabilizer code de�ned by C is a [[n, n−k1−k2]]-code.
This kind of code is called a CSS code.

Proof. Let (uX , uZ) and (vX , vZ) be two vectors of CX ⊕ CZ , then 〈(uX , uZ), (vX , vZ)〉 = uTXvZ +
uTZvX = 0 + 0 = 0. Hence, CX ⊕ CZ is isotropic.

The fact that it is an [[n, n− k1 − k2]]-code is just an application of Equation (1).

This codes have been invented by Robert Calderbank, Peter Shor and Andrew Steane [4], and are
called CSS codes from the name of their inventors.

De�nition 2.3.12. Take (CX , CZ) an [[n, k, d]] CSS code, given by the parity check matrices HX , HZ .
This code is said to have weight w if every columns and rows of HX and HZ has weight at most w
(that is to say at most w non-zero coe�cients).

In that case one says that the code is an [[n, k, d, w]] code.

Note that this de�nition of the weight depends on the parity check matrices, and not only on the
QECC itself (since the same CSS code can be given by di�erents parity check matrices). This implies
that the weight of a CSS code is a question of matrices and not of QECC anymore.

3 Homological product of random codes

3.1 Homological codes

A special kind of CSS code can be created by looking at a certain class of operator.
In everything that follows, I will denote E = Fn2 .

De�nition 3.1.1. Let ∂ : E → E be a linear map such that ∂2 = 0. This kind of operator is called a
boundary operator.

With ∂ a boundary operator, one can de�ne a CSS code : let CZ ≡ Im ∂ and CX ≡ Im ∂T .

xT∂y = (∂Tx)T y so (CZ)⊥ = ker ∂T and similarly (CX)
⊥

= ker ∂. As ∂2 = 0, Im ∂ ⊂ ker ∂, so
(CX , CZ) de�nes a [[n, n − 2 rank ∂]] CSS code given by the matrices of ∂ and ∂T . So this code has
low weight if the matrix of ∂ is low weighted.

This kind of operator is studied in homological algebra, which has its own way of naming objects.

6

The elements of ker ∂ are called the cycles of ∂. An element of Im ∂ is said to be a trivial cycle
or a boundary.

The space H(∂) = ker ∂/ Im ∂ is called the homology space of ∂. ∂ is said to have homological

dimension H if dim(H(∂)) = H. In that case, if dim Im ∂ = L, dimE = H + 2L. One can then see
that if dimE and dim(H(∂)) are �xed, then dim Im ∂ is �xed too. With those notations, (CX , CZ) is
then a [[dim(E), H]] QECC.

If C is the code de�ned by ∂, the set of recoverable errors of C are the elements of Im ∂
⊕

Im ∂T ,
that is to say the trivial cycles. The non-recoverable errors of C are indeed exactly the nontrivial cycles
of ∂, which is shown by this property:

Proposition 3.1.2 ([1]). Let ∂ be a boundary operator, let V = Im ∂
⊕

Im ∂T the code de�ned by this
operator. Then the set of non-recoverable errors V̂ = ker ∂

⊕
ker ∂T

The maximal distance of C is then given by

min
ϕ∈(ker ∂\Im ∂)∪(ker ∂T \Im ∂T)

|ϕ|.

In [10], Tillich and Zémor de�ned an operation made to combine two existing homological codes
in order to create a new. They called it hypergraph product, but Bravyi and Hastings, in [3] used
the name homological product.

If one takes two boundary operators δ1 : E1 → E1 and δ2 : E2 → E2, one can de�ne their product
as

∂ = δ1 ⊗ I + I ⊗ δ2 : E1 ⊗ E2 → E1 ⊗ E2

Proposition 3.1.3 ([3]). If the δi are boundary operators de�ning [[ni, ki, di]] codes with weights wi,
then ∂ is a boundary operator, which de�nes an [[n1n2, k1k2,min(d1, d2), w1 + w2]] code.

One can see that when one takes the product of two homological codes, the weight of the product
grows in an additive way when the size of the code grows in a multiplicative way. In their article [3],
Bravyi and Hastings used that fact in order to construct families of homological QECC whose size and
distance grows linearly (with parameter n) and its weight grows as the square root of n.

3.2 Product of random homological codes

Theorem 3.2.1 ([3]). If δ1 and δ2 are two random boundary operators, with space of size n and
homological dimension H = ρencn. Let ∂ be the homological product of δ1 and δ2, let C be the code
de�ned by ∂. For su�ciently large n, and for su�ciently small c and ρenc (independent of n),

P
(
d(C) ≤ cn2

)
= on(1)

This theorem implies the existence of a family of [[n2, (ρencn
2), cn2, O(n)]] codes, with n going to

in�nity, that is to say a family of [[n,O(n), O(n), O(n1/2)]] codes.
In the following, I give a sketch of the proof of this theorem.

3.3 Proof sketch

I take the same notation as in the statement of the theorem.
The idea of the proof is the following: if ψ is a non-trivial cycle of ∂ with total weight ≤ cn2 (for a

certain c ∈]0, 1[, then ψ ∈ Fn2 ⊗ Fn2 can be seen as an n× n matrix. Then one can choose r ∈]c, 1[, and
set n′ = rn, and c′ ∈]0, 1[(arbitrarly small as c tends to 0) such that a submatrix of ψ of size n′ × n′
has weight of each of its columns and rows ≤ c′n′ (they call this condition Uniform Low Weight, or
ULW). They call this submatrix a reduced cycle of ∂.

Then, the probability that a nontrivial cycle with low weight exist is bounded by
(
n
n′

)2Pred + o(1),
where Pred is the probability that there exist a non-zero reduced cycle of ∂ whose every column and
row has weight ≤ cn′ and the o(1) stands for the probability that the reduced cycles are zero. The
goal of the rest of the proof is to prove that Pred is exponentially small.

7

After that, Bravyi and Hastings introduce the notion of good operators. δ1 and δ2 are good if they
do not have any element of their kernel with support in the last n− n′ coordinates. They prove that
the δi are good with high probability (increasing to 1 as n is growing), so for the remaining of the
proof, they assume that δ1 and δ2 are good.

It appears that as the δi are good, this is indeed easy to count the number of reduced cycles (seen
as matrices) of a given rank.

Proposition 3.3.1. If we denote by Γ(R) the number of reduced cycles of rank R of ∂, then

Γ(R) ≤ O(1) · 2(n+H)R−R2
if R ≤ H (2)

Γ(R) ≤ O(1) · 2(n+H/2)R−R2/2 if R ≥ H (3)

In order to prove this result, they restrict the image of δi to their �rst n
′ coordinates (no information

about the kernel of δi is lost here, because δi is supposed to be good), and quotient by the image of the
n− n′ last coordinates. This construction gives two new boundary operators δ′1 and δ

′
2, then de�ne ∂′

their homological product, and count the number of possible extensions of each vector in the kernel of
δ′ to a vector in the kernel of δ. They prove the following formula:

Γ(R) =

min(K,R)∑
r=0

#
{
h ∈ ker ∂′, rank(h) = r

}
· En

′,R
K,r

With K the size of the quotient space, and En
′,R

K,r is the number of extensions of a K ×K matrix of
rank r to a n′ × n′ matrix of rank R.

They prove that

EA,Ra,r ≤ O(1) · 2(2A−a)R−ar−R2+(r+R)2/4

#
{
h ∈ ker ∂′, rank(h) = r

}
≤ O(1) · 22(H+L)r−r2 ·

∞∑
f=0

2−2f
2+2f(r−H)

By using those two formulas, they have the wanted bound on Γ(R).
After that, they prove that there exists an enumeration of the reduced cycles of rank R such that

if one �x an index j, the jth element of the enumeration is uniform in the set of matrices of rank R
(when δ1 and δ2 are uniform in the set of boundary operators).

This enumeration has this property because it is invariant by the action of GL2
n, and because the

rank is a characteristic invariant of the orbits of Mn by GL2
n.

They now only have to bound the probability that a random matrix of a given rank has weight of
its columns and rows of weight c′n′, and to do an union bound.

They prove that the probability that an uniform n×n matrix of rank R has all its rows and columns
is upper bounded by O(1)2R

2−(1−ε)nR.
The �nal bound they obtain is the folowing (for a small η):

Pgoodred ≤ O(1) · 2−n/2+nη/2

This concludes the proof, since
(
n
n′

)
· 2−n/2+nη/2 is o(1) for su�ciently small c and ρenc.

4 Generalisation of the result

As the weight of the product of two homological code is linear in the weight of the two factors and
(with high probability) the distance of the product if the product of the distance of the two factors,
we get a [[n2, O(n2), O(n2), O(n)]] QECC when we take the homological product of two random codes.
The natural question to ask is whether the same thing is true if we take a product of k factors. If the
distance is still multiplicative, then we would have a [[nk, O(nk), O(nk), O(n)]] QECC, that is to say a
[[n,O(n), O(n), O(n1/k)]] QECC, which would decrease a lot the previous best weight for good QECC
that we saw in introduction.

8

Proposition 4.0.1. The homological product is associative.

Proof. Direct application of the de�nitions.

Some results generalize well, like the Künneth formula:

Proposition 4.0.2. If the δi are boundaries operators, and ∂ their product, then

ker ∂ =
n⊗
i=1

ker δi + Im ∂

Proof. The case n = 2 is treated in [3], let's do the other cases by induction.
Assume the formula is true for n− 1 (n ≥ 3).
Let δi be n boundaries operators, and ∂ their product. Let ∂′ be the product of δ1, . . . δn−1. By

the induction hypothesis, ker ∂′ =
⊗n−1

i=1 ker δi + Im ∂.
As the homological product is associative, ∂ is the homological product of ∂′ and δn. By the n = 2

case of the Künneth formula,

ker ∂ =
n⊗
i=1

ker δi + Im ∂′ ⊗ ker δn + Im ∂

Let us show that the second term Im ∂′ ⊗ ker δn is included in Im ∂.
Take y ∈ Im ∂′ ⊗ ker δn. y =

∑r
i=1 ∂

′(hi) ⊗ gi with hi ∈ E and gi ∈ ker δn. Then I claim that
y = ∂

∑r
i=1 hi ⊗ gi.

∂

r∑
i=1

hi ⊗ gi =

r∑
i=1

∂hi ⊗ gi =

r∑
i=1

(∂′ ⊗ I)hi ⊗ gi + (I ⊗ δn)hi ⊗ gi

=

r∑
i=1

∂′hi ⊗ gi + hi ⊗ gi =

r∑
i=1

∂′hi ⊗ gi = y

In order to simplify the study, I only made precise computations about the 3 factor case.
Let ∂ be the homological product of δ1, δ2 and δ3. The dimension of the space is n.
Take φ a non trivial cycle for ∂ with weight less than cn3, then one can reduce it to a reduced cycle

with all it 2d slices of weight less than cn′2. I call this property, as in the 2-tensor case, the Uniform
Low Weight (ULW) condition.

First, I will introduce some invariants I studied in order to answer this questions, then I will explain
another question I was ask, which is the question of the distribution of the weight of the matrices given
their rank.

4.1 Invariants

The reason why the rank appears in the formula of Γ (3) is because this is a quantity invariant under the
action of GLn(F2)

2. More precisely, the rank is the characteristic invariant of the orbits of (Fn2)⊗ (Fn2)
under the action of GLn(F2)

2.

Proposition 4.1.1. Let K be an arbitrary �eld, r ≤ n two integers.

∀M ∈Mn(K), rk(M) = r ⇐⇒ ∃P,Q ∈ GLn(K), PMQ =

(
Ir 0
0 0

)
In the 3-tensor case, the set (Fn2 ⊗ Fn2 ⊗ Fn2) /GLn(F2)

3 is not well understood, we then cannot
use the same argument: we do not know characteritic invariant of the orbit of Fn2 ⊗ Fn2 ⊗ Fn2 under
the action of GLn(F2)

3.
I then studied some invariants under the action of GLn(F2)

3 in order to �nd one which has the
following characteristics:

9

• We want to be able to compute the probability that a uniform tensor with this invariant has the
LWC.

• We want to compute the number of cycles with a given value of this invariant, or at least a good
upper bound on it.

Those characteristics are here to allow me to link probabilities to algebraic properties that I can
study.

None of those quantities is a characteristic invariant of the orbits, but as the orbit are not well
understood, it seemed reasonable to look at only weak invariants.

In what follows, n will be the dimension of the space. It is a power of 2.

4.1.1 Rank

De�nition 4.1.2. Let ψ ∈ A⊗B ⊗ C be a tensor. Its rank is de�ned as:

rk(ψ) = min

{
r ∈ Z≥0 ψ =

r∑
i=1

ai ⊗ bi ⊗ ci, ai, bi, ci ∈ A,B,C

}

The tensor rank is an invariant under the action of GLn(F2)
3, but it is not characteristic in general,

in contrary to the matrix case (see for example [8]).
The �rst problem was that computing the rank of a tensor is an NP-complete problem ([5]), which

�rstly tends to indicate that question linked to the tensor rank should be complicated and secondly
increase the complexity of doing numerical computations and samples.

In order to understand if the rank of the tensor could be a good candidate to be an invariant for
our study, we looked at the case of rank 1 tensors which are simpler to consider since they form a
single orbit.

In the case of the study of the rank, since this was the �rst invariant I studied, I tried to study it
in the case of the product of k factors.

Proposition 4.1.3. Let ∂ be the homological product of the (δi)i=1...k, then let Γ(1) be the number of
reduced cycles of ∂ of rank 1. Then

Γ(1) ≤ O(1) · 2krn+
1+ρ

k/2
enc
2

nk/2

With n′ = (1− r)n.

Proof. The number of extensions of a given rank 1 tensor of size n′× · · · ×n′ to a rank 1 tensor of size

n× · · · × n in F2 is 2n−n
′k

= 2krn.
I bound the number of rank 1 tensor in the kernel of ∂′ by using the same kind of bound proven

in [3] by considering ∂ as the homological product product of two boundary operators (on the space
E⊗k/2). The product of those two quantities leads to the bound.

The probability for a rank 1 tensor to be of uniform low weight is easy to compute

Proposition 4.1.4. Let ψ = v1 ⊗ . . .⊗ vk be a uniform rank 1 tensor. Then

P(ψ ULW) = P(∀i, w(vi) ≤ c′n′) = P(w(v1) ≤ c′n′)k = O(1)2−nk(1−h(c
′))

With h(·) the binary entropy function.

The overall bound is then, with ψ uniform rank 1 tensor.

Γ(1)P(ψ ULW) ≤ O(1)2−nk(1−h(c
′))+krn+

1+ρ
k/2
enc
2

nk/2

Which is clearly not o(1) when k ≥ 3.

10

I have to say that I think that this bound is far from close. I wrote a program to approximate the
number of rank 1 vector in the kernel of an homological operator, by Bayesian inference. The amount
of memory needed to do my computation (when we do the computation for a 4 factor product, we
need to store O(n8) values for the matrix of ∂) is too large to raise n too large, but the logarithm of
the number of rank 1 vector in the kernel seems to grows linearly in n, and not in n2, as implied by
the bound. More precise computation seems to be needed in order to re�ne the bound.

The rank did not seems to be a nice invariant to work with, seen the fact that it computation is
very di�cult and the bound I managed to prove were not good.

4.1.2 Analytic rank

Another invariant I studied during the end of the internship was the analytic rank.

De�nition 4.1.5. Let T ∈ A ⊗ B ⊗ C be a tensor, seen as a multilinear form T : A × B × C → F2.
Then the bias of T is de�ned to be

bias(T) = Ex,y,z((−1)T (x,y,z)) = Px,y(T (·, x, y) = 0)

And from this quantity, the analytic rank is de�ned: arank(T) = − log(bias(T))

This quantity is clearly invariant by the action of GL3
n, and seems more related to the weight of

the slices of the tensor.

Proposition 4.1.6.

Px,y(T (·, x, y) = 0) = Px,y(T (ei, x, y) = 0 ∀i)

This way of considering a tensor as a collection of some linear form, even if it has not be as usefull
as expected, lead me to consider another problem.

Let take T ∈ A⊗A⊗A a tensor, with A = Fm2 . Let Un, Vn,Wn be a sequence of random variables
i.i.d. in Mn,m(F2)

3 for all n. Now let Tn = (Un ⊗ Vn ⊗Wn)T ∈ (Fn2)⊗3.
The question is then to compute the asymptotic probability of Tn to be ULW.
The �rst fact to emphase is that evaluating a coe�cient (i, j, k)of Tn is the same as evaluating Tn

at (ei, ej , ek), and that this is the same as evaluating T at the point ui, vj , wk, if ui (resp vj , wk) is the
ith (resp the jth or kth) column vector of Un (resp Vn, Wn), which is an uniform random vector of A.

Another fact is that for a su�ciently large n (say n � 2m), we can expect with high probability
that every vector of A will be drawn in the columns vectors of Un, and Vn.

This justi�es the introduction of the family of random variables (NU
a)a∈A, (NV

a)a∈A by:

NU
a = # {i ∈ [1,m], ui = a}

NV
a = # {i ∈ [1,m], vi = a}

Where Un = [u1, . . . , un], Vn = [[v1, . . . , vn].

The random variables NU
a (resp NV

a) follow the multinomial law, of parameters
(
n, 1
|A|

)
. The

interesting value is the weight of a slice of Tn, that is to say, for k ∈ [1, n] (Where W = [w1, . . . , wn]):

S =
∑

a,b∈A2 T (a,b,wk) 6=0

NU
a N

V
b

We then want to bound the probability for S to be less or equal to cn2. We can do that using a
Gaussian approximation. For that, we need the expectation of those random variables.

First, let αk =
#{a,b∈A⊗2, T (a,b,wk)=1}

|A|2 and p = 1/|A|. The collection of the αk is invariant In the

following, I will omit the k.

Proposition 4.1.7.

E(S) = αn2

11

Proof. First, let us recall that the mean of a multinomial is: E(NU
a) = np. Then the formula follows

directly from the fact the NU
a and NU

b are independent from each other.

The variance is also needed to compute any gaussian approximation of S, but I made several
attempt to compute it and leaded to complicated, unusable (and possibly false) formulas. In order to
have easier computations, I used a process called �Poissonization�.

Proposition 4.1.8. Let n be a Poisson random variable with parameter λ, and (NU
a), (NV

a) indepen-
dent multinomial of parameters (n, p). Then the marginal distribution of (NU

a), (NV
a) are independent

poisson variable of parameters pλ.

That independence gives us an easier way to compute the mean and variance of S.

Proposition 4.1.9.

E(S) = αλ2

V(S) = α(λ2 + 2pλ3)

Proof. The proof for the mean is the same as before.

V(nanb) = E(na)
2V(nb) + E(nb)

2V(na) + V(na)V(nb) = 2(pλ)3 + (pλ)2.

As the NU
a , N

U
a are iid, (I take T = T (·, ·, wk))

V(S) =
∑

a,b∈A×A
T (a, b)2V(NU

a N
V
b) = #A2α(2(pλ)3 + (pλ)2) = α(λ2 + 2pλ3)

A remaining thing to do would be to bound the probability that Tn has ULW by gaussian ap-
proximation, which I started at the very end of my internship and therefore had not the time to
�nish.

4.1.3 Slice collection

De�nition 4.1.10. Let A,B,C = Fn2 . Let ψ ∈ A⊗ B ⊗ C. ψ can be seen as a linear map ψ : A∗ →
B ⊗ C, that is to say a map ψ : Fn2 →Mn(F2).

We call the slice collection of ψ the collection (s1, . . . , sn), with

∀r, sr = # {M ∈ Im(ψ), rank(M) = r}

Remark 4.1.11. The choice of considering ψ : A∗ → B⊗C and not ψ : B∗ → A⊗C or ψ : C∗ → A⊗B
is arbitrary (this is the �slice direction�), but the results presented here are independent of it.

Proposition 4.1.12. The slice collection of a tensor is invariant by the action of Gl3n

Proof. Let ψ : A∗ → B ⊗ C a tensor (same notation as in the de�nition).
Let g1, g2, g3 ∈ GL3

n. It acts as follows: ∀x ∈ A∗, (g1, g2, g3)ψ(x) = g2ψ(g1x)g3. Hence, the action
of g1 does not change the image of ψ, and for all a ∈ A∗, we have that rank(g2ψ(a)g3) = rank(ψ(a)).

When a slice collection is �xed, if we take the slice decomposition (see Fig 1) a random tensor with
this slice collection, then this is easy to compute the probability that the ith slice of this tensor has
rank ri. With this known, we can start to try to compute the weight of the slices of such a tensor.

The problem is then to bound the probability of a matrix of a given rank to have total weight less
than cn2, this is the question of the next subsection.

First, we have the following result:

Proposition 4.1.13. [6, Theorem 2.1] If M is sampled uniformly in the set of rank r matrices, then
for all i, j, P(Mij = 1) = P(M11 = 1), this quantity is called the average weight per entry.

12

Figure 1: Slices of a 3-tensor

And it appears that we have an exact formula for this quantity

Proposition 4.1.14. [6, Theorem 2.3] If M is sampled uniformly in the set of n×n matrices of rank
r, then

P(Mij = 1) =
1

2

1− 1/2r

(1− 1/2n)2

Corollary 4.1.15. If M is sampled uniformly in the set of n× n matrices of rank r, then

E(W (M)) =
n2

2

1− 1/2r

(1− 1/2n)2

The problem is then to �nd more precise informations about the weight of random matrices of a
given rank in order to understand them better.

In order to have experimental results, I made several Python program in order to see how the
weight of random matrices behave in function of the rank. The codes and method used to have those
curves are presented in the Appendix A.2.

Figure 2: Distribution of the weight of randomly choosen 20 × 20 matrices in F2 in function of their
rank

As we can see in Figure 2, the higher the rank is, the more the distribution of the weight seems to
behave like a Gaussian, centered in its expected value.

As the exact distribution of the weight of �xed rank matrices should be very hard to compute, I
wanted to approximate this by a Gaussian. This asks to know the second moment of the weight of a
random matrix of �xed rank.

4.2 Weight of a matrix of a given rank

I explored several ways of constructing matrices, with control of their rank.

13

The idea behind it is that if one can contruct a random variable Mr for r = 1 . . . n such that Mr

is of rank at most r, such that the distribution of Mr given its rank is uniform in the set of matrix of
a given rank and such that ones knows some information about the moments of the weight of Mr, we
will be able to �nd the kth moment of a uniform rank r matrix.

More formally:

Proposition 4.2.1. If (Mr) is a collection of random variables with values in Mn(F2), f : Mn(F2)→
Z≥0 a function such that for all r = 1 . . . n:

• rank(Mr) ≤ r

• For all k = 1 . . . r, the random variable (Mr/ rank = k) is uniform in the set of rank k matrices

• We know E(f(Mr)) and P(rk(Mr) = k) for all k

Then we can, by a matrix inversion, deduce E(f(M)) with M uniform of rank r = 1 . . . n, by the
collection of equations (for all r):

E(f(Mr)) =
r∑

k=0

Erank(M)=k(f(M))P(rk(Mr) = k)

The interesting functions f are the powers of the weight of the matrices, because with them we
can hope to compute some Gaussian approximation of the weight of a random matrix of �xed rank by
computing the moments of the weight.

4.3 Sum of rank 1 matrices

Proposition 4.3.1.

rank(M) = min

(
r ∈ Z≥0, M =

r∑
i=0

vi
twj

)
Proof. This is a direct application of the Gaussian elimination algorithm.

Then a way of constructing matrices of a certain maximal rank is to add up random products of
vectors.

More precisely, I take n an integer (the size of the space), r an integer less than or equal to n, and
X1 . . . Xr and Y1 . . . Yr some independent random uniform vectors in Fn2 . I then set

Mr =

r∑
i=1

Xi
tYi

Proposition 4.3.2. This construction satis�es the hypothesis of Prop 4.2.1.

Proposition 4.3.3.

• E (Mr) = n2

2

(
1− 1

2r

)
• E

(
M2
r

)
= n2

(
3
4 −

3
2

1
2r −

3
4

1
22r

+ n
(

1
2r −

1
22r

)
+ n2

(
1
4 −

1
2r+1 + 1

22r+2

))
Proof. See Appendix A.1

As we add random matrices at each �step�, the rank of Mr is a Markov chain. We can then try to
study it in order to �nd the quantity P(rk(Mr) = k).

For simplicity, by now we will have a �xed collection of random variables X1 . . . Xn and Y1 . . . Yn
(n is �xed) iid uniform in Fn2 , and we let Ml =

∑l
i=1Xi

tYi.
At each step, the rank of Mt can only increase of 1, decrease of 1 or stay the same. We denote by

respectively those probabilites ur, dr and sr (they depend only on the rank r of Mt)

Proposition 4.3.4.

14

• ur = (1− 2n−r)
2

• dr = (2r−1)2r−1

22n

Proof. Mt+1 = Mt + vt+1
twt+1. If wt+1 or vt+1 are 0, the rank does not change, so let's assume they

are di�erent from 0.

If Mt is of rank r, there are P,Q ∈ GLn such that PMtQ = Jr with Jr =

(
Ir 0
0 0

)
. As

rankMt + vt+1
twt+1 = rankP (Mt + vt+1

twt+1)Q and as the application of invertible operators leaves
the distribution of vt and wt unchanged, we can assume that at step t, Mt = Jr.

Let It =< v1, . . . , vt >,Kt =< w1, . . . , wt >. The rank will increase if and only if vt+1 /∈ It and
Wt+1 /∈ Kt, so with probability ur = (1− 2n−r)

2
.

If vt+1 is in It (with probability 2r−1
2n) (and di�erent from 0), then there exists A ∈ GL(It) that

sends vt+1 to e1. Then we can conjugate by

(
A 0
I 0

)
without changing the rank and changing the

distribution of wt+1.
Then we have, with (w1, . . . , wn) uniform, rank(Mt+1) = rank(S) with S the following matrix:

1 + w1 w2 w3 · · · wr · · · wn
0 1 0 · · · 0 · · · 0
... 0

. . . 0 · · · 0
0 0 · · · · · · 1 · · · 0
0 0 · · · · · · 0 · · · 0

(0)


And the rank of this matrix is r − 1 if and only if w1 = (1, w2, . . . , wr, 0, . . . , 0), which occurs with

probability 2r−1

2n . The same holds is wt+1 ∈ Wt, then the overall probability is then the expected
one.

The transition matrix of this Markov chain is then:
1− (1− 2n)2 (1− 2n)2 0 · · · 0 0 0

2−2n 1− u1 − d1
(
1− 2n−1

)2 · · · 0 0 0
...

. . .
...

...
...

0 0 0 · · · dn−1 sn−1 un−1

0 0 0 · · · 0 (2n−1)2n−1

22n
1− (2n−1)2n−1

22n

 (4)

Conjecture 4.3.5. The eigenvalues of this matrix are 1, 2−1, 2−2, . . . , 2−n

I ended up with that conjecture after entering this matrix in Python and computed its eigenvalues
for n = 1 . . . 20.

I started to compute the eigenvector and the eigenvalues of this transition matrix, but it appeared
that it was very complicated and lead to unusable formulas, I then looked for another Markov chain.

4.4 Adding up columns

Another approach to the problem is to build a matrix by simply adding columns one after the other.
If we want to formalize this construction: take X1, . . . Xn n iid uniform random column vectors in

Fn2 , and set Mt = [X1, . . . Xt].
Then the rank of Mt is a Markov chain. At each step the rank can only stay the same or increase.

Proposition 4.4.1.

• P(rank(Mt+1) = r + 1/ rank(Mt) = r) = 1− 2r−n

• P(rank(Mt+1) = r/ rank(Mt) = r) = 2r−n

15

Proof. The rank of Mt+1 is the same as the rank of Mt if and only if the vector added is inside the
space spanned by the �rst t vectors, which is of dimension rank(Mt).

The transition matrix of this Markov chain is then:

Σ =


2−n 1− 2−n 0 · · · 0 0

0 21−n 1− 21−n · · · 0 0

0 0
. . .

...
...

...
... (0) 1/2 1/2

0 0 0 1


This matrix is simpler than the one of the Subsection 4.3 because it is triangular. We then know

its eigenvalues, which are (2−i)i=0...n and its eigenvectors can be computed.

Proposition 4.4.2. Let i ∈ {0 . . . n}, and x(i) ∈ Rn+1 be the following vector:

∀r ∈ {0 . . . n} , x(i)r = 2−ri
r−1∏
k=0

1− 2k−n+i

1− 2k−n
(5)

=

r−1∏
k=0

2n−k−i − 1

2n−k − 1
(6)

Then for all i ∈ {0 . . . n}, x(i) is the eigenvector of Σ associated to the eigenvalue 2−i.

Proof. The equation Σx = 2ix can be rephrased:

For r = 0 . . . n− 1, 2r−nxr + (1− 2r−n)xr+1 = 2−ixr (7)

⇐⇒ xr+1 =
2−i − 2r−n

1− 2r−n
xr (8)

⇐⇒ xr+1 = 2−i
1− 2r−n+i

1− 2r−n
xr (9)

For r = n, xn = 2−ixn (10)

These equations are satis�ed by the x(i). Eq 8 follows directly from Eq 5, and Eq 10 follows from the
fact that if i 6= 0, xin = 0.

The problem is that the computation of the nth power is hard and I didn't manage to make it in
the time I had.

5 Conclusion

5.1 Work done

After understanding the theory of QECC, I acquired a good understanding of the proof of [3]. proceeded
to identify and determine whether it could be extended in terms of application.

The main e�ort and focus consisted on understanding the di�erent invariants of the 3-tensors under
the action of GLn(F2)

3. For each of those invariants, I did attempt to understand the distribution of
the weight of the tensors to create bounds on the probability that a reduced cycle has the uniform
low weight condition. I speci�cally worked on the ranking, the analytic rank and the slice collection.
I then worked on the related question of the distribution of the weight of matrices in function of their
rank.

To do so, I studied several invariants and several matrix constructions algorithms which led me to
study further to Markov's chains.

16

5.2 Perspectives

The work performed here was to dig in several directions in order to see the whether the result could be
improved. This question remains open, and so is the question of the existence of [[n,O(n), O(n), O(k

√
n)]]

QECC for k ≥ 3.
In the case of the 3-factors homological product of random codes, the answer should be related to

the invariants of the 3-tensors and hence those invariants still need to be studied. Another potetial
axis of research is the case of the product of more than 3 homological codes. As the Künneth formula
still works with more than 3 factors, the case of 4 or more factors could be studied.

Some additional work remains to be completed regarding the constructions I have developed. I did
not end up with the second moments of the weight of a uniform matrix of rank r. If this result is
known for the rank 1, I did not �nd any reference about the general case, or about full rank matrices. I
think the Markov chains developed during this internship are worth studying since they seems to have
interesting properties. A start point could be to prove that the Markov Chain 4, for whose I strongly
conjecture that the eigenvalues are the inverse of the power of two. Understanding and diagonalizing
this Markov Chain could lead to a formula for the moments of the weight of random rank r matrices.

In order to have more experimental results, one could also improve a lot the Python code I produced,
in order to obtain more data, better algorithms than Gaussian elimination could be used for example
(for example algorithms based on the Strassen algorithm, in O(n2.81)).

5.3 Context of the internship

This internship was realized in QMATH, University of Copenhagen under the supervision of Peter
Vrana.

It was the �rst time that I went abroad alone, and this was a di�cult exercise. I didn't know the
culture nor the language of Denmark, and I didn't know anyone there. I learned to join and cooperate
with an existing team and to speak English daily, which was quite challenging at the beginning.

Even if I experienced challenging times, especially during the �rst weekends when alone, I learned
how to overcome quickly this loneliness by actively working on numerous activities such as reading
and planning weekends in France. I think that from now on and considering my future work and
experiences abroad I will now be able and prepared to manage a speedy integration with other cultures
and people. Apart from this initial challenge, I have found the team to be very friendly and I enjoyed
working with them. There were several nationalities represented and I was very well welcomed by
Peter and by the rest of the team.

References

[1] H. Bombin and M. A. Martin-Delgado. Homological error correction: Classical and quantum
codes. 48, 06 2006.

[2] N. Bourbaki. Commutative Algebra: Chapters 1-7. Springer-Verlag New York, 1989.

[3] S. Bravyi and M. B. Hastings. Homological product codes. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 273�282. ACM, 2014.

[4] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Physical Review
A, 54(2):1098, 1996.

[5] J. Håstad. Tensor rank is np-complete. Journal of Algorithms, 11(4):644 � 654, 1990.

[6] T. Migler, K. E. Morrison, and M. Ogle. Weight and rank of matrices over �nite �elds. arXiv
preprint math/0403314, 2004.

[7] M. A. Nielsen and I. Chuang. Quantum computation and quantum information. AAPT, 2002.

[8] M. R. Bremner and J. Hu. Canonical forms of small tensors over f_2. 06 2012.

17

[9] J.-P. Serre. Linear representations of �nite groups, volume 42. Springer Science & Business Media,
2012.

[10] J. Tillich and G. Zémor. Quantum LDPC codes with positive rate and minimum distance pro-
portional to n�{1/2}. CoRR, abs/0903.0566, 2009.

A Appendix

A.1 Misc proofs

Proof of Proposition 4.3.3.
First, let's take X1, . . . , Xr be vectors sampled in F s2 iid according to some distribution such that

P((X1)k = 1) = p and does not depends on k.
Let S =

∑r
i=1Xi and let W = |S| the Hamming weight of S. We are going to compute the �rst

two moments of W .
Let Yi =

∑r
k=1 (Xk)i mod 2.

E(Yi) =

r∑
k=0
k odd

(
r

k

)
pk(1− p)n−k

=
r∑

k=0

(
r

k

)
1− (−1)k

2
pk(1− p)n−k

=
1

2
(1− (1− 2p)r)

Then as W =
∑n

i=1 Yi, E(W) = s
2 (1− (1− 2p)r).

We have Y 2
i = Yi because Yi ∈ {0, 1}. Then in order to compute E(W 2), we have to compute

E(YiYj) with i 6= j.

Let i 6= j. For a, b ∈ 0, 1, let pab = P
(

(X1)i = a, (X1)j = b
)
. Note that it can depends on i and j

(this dependence will not be written for the sake of simplicity).

E(YiYj) =
∑

k00,k01,k10,k11∑
kij=r

k01+k11 odd

k10+k11odd

(
r

k00, k01, k10, k11

)
pk0000 p

k10
10 p

k01
01 p

k11
11

=
∑

k00,k01,k10,k11∑
kij=r

(
r

k00, k01, k10, k11

)
1− (−1)k01+k11

2

1− (−1)k10+k11

2
pk0000 p

k10
10 p

k01
01 p

k11
11

=
1

4
(1− (p00 − p01 + p11 + p10)

r − (p00 − p01 − p11 − p10)r + (p00 − p01 + p11 − p10)r)

When s = n2, and the Xi are distributed as the product of 2 vectors. Let U1, . . . , Ur and V1, . . . , Vr
uniform in Fn2 and Xi = Ui

tVi.
Then, in that case we have, for k ∈ [1, n2].

P((Xi)k = 1) = P((Ui)k(Vi)k = 1) = P((Ui)k = 1, (Vi)k = 1) =
1

4

And then in that case E(W) = n2

2 (1− 1
2r).

Now let us write the k ∈ [1, n2] as the coordinate of a matrix. Take a, b, c, d with a 6= c and b 6= d,
then

p11 =
1

16
, p01 = p10 =

3

16
, p00 =

9

16

18

Now if a = c or (exclusive or) b = d, computations shows that

p11 = p10 = p01 =
1

8
, p00 =

5

8

Now if we apply those values to the preceding formulas (with a 6= c, b 6= d):

E(YabYcd) =
1

4
(1− 2

1

2r
+

1

22r
) and E(YabYad) =

1

4
(1− 1

22r
)

Then we have:

E(W 2) =
r∑

a,b,c,d=1

E(YabYcd)

=
r∑

a,b=1

E(Y 2
ab) +

r∑
a,b,c=1
b 6=c

E(YabYac) +
r∑

a,b,c=1
a6=c

E(YabYcb) +
r∑

a,b,c,d=1
a6=c
b 6=d

E(YabYcd)

= n2E(Y 2
11) + 2n

(
n

2

)
E(Y12Y13) +

(
n

2

)2

E(Y12Y34)

And some more computations leads to the wanted formula.

A.2 Sampling random matrices

Proposition A.2.1. Let r ≤ n. If P,Q are two uniform elements of Gln(F2), then the random variable

PJrQ is uniform in the set of F2 n× n matrices of rank r. Where Jr =

(
Ir 0
0 0

)
.

Proof. Take A1 and A2 two rank r matrices. There exit P1, Q1 and P2, Q2 such that PiAiQi = Jr.
Then, let P,Q be two random invertible matrices. The application M 7→ PiMQi is bijective, therefore

P (PJrQ = A1) = P
(
P−11 PJrQQ

−1
1 = Jr

)
= P

(
P2P

−1
1 PJrQQ

−1
1 Q2 = A2

)
And as P2P

−1
1 and Q−11 Q2 are invertible, the distribution of P2P

−1
1 P and QQ−11 Q2 is uniform in the

set of invertible matrices, so

P
(
P2P

−1
1 PJrQQ

−1
1 Q2 = A2

)
= P (PJrQ = A2) .

I used that property in order to sample uniform rank r matrices. The only remaining problem was
to sample uniform elements of Gln. This is done by the technique of sample and reject.

Proposition A.2.2. Let E ⊂ F be two �nite sets. Let X be uniform in F , then X conditioned on
event �belongs to E� is uniformly distributed in E.

The idea is then to sample uniformly choosen matrices in Mn, to test whether it is invertible or
not, and if this is not the case, repeat this procedure until we �nd an invertible matrix.

Since the python library numpy does not handle the �nite �eld case, I had to program a version
of the gaussian pivot in order to test those things. The overall complexity is O(1/p · n3). With p the
probability of a matrix to be invertible.

Proposition A.2.3. Let Fq be the �eld with q elements. Let p be the probability that a uniformly
random n× n matrix is invertible. Then

p ≥ e−
1
q−1

19

Remark A.2.4. Note that this bound does not depend on n

Proof. Let n be an integer. Let us enumerate the number of invertible n× n matrices.
First, I choose the �rst row vector, it just has to be nonzero: qn − 1 choices. Then, I choose the

second row vector, it just has to not belong to the vector space spanned by the �rst row: qn − q
choices. This procedure generalizes: at step k, I have to choose a vector not belonging to the vector
space spanned by the k − 1 �rst rows vectors: qn − qk−1 choices.

The total number of invertible n× n matrices in Fq is then

(qn − 1)(qn − q) · · · (qn − qn−1)

The probability for a matrix to be invertible is then

(qn − 1)(qn − q) · · · (qn − qn−1)
qn2 = (1− q−n)(1− q−(n−1)) · · · (1− q−1) ≥

∞∏
k=1

(1− q−k)

Then, I apply ln: ∑
k≥1

ln
(

1− q−k
)
≥
∑
k≥1

q−k =
1

1− q

And then by application of exp, the result follows.

A.3 Code

You will �nd next some of the code I produced in order to generate random matrices and random
tensors of a given rank.

def gaussian_pivot_F2(M, invert_only=False):

m, n = M.shape

M = np.mat(np.bmat([M, np.identity(m)]), dtype=np.int_) # m lines, n+m cols

P = np.identity(n)

j = 0

l = 0

nulCol = -1

while j<=n+nulCol:

piv = None

for k in range(l, m):

if M[k, j] != 0:

piv = k

break

if piv is None:

for f in range(m):

M[f, j], M[f, n+nulCol] = M[f, n+nulCol], M[f, j]

for f in range(n):

P[f, j], P[f, n+nulCol] = P[f, n+nulCol], P[f, j]

nulCol-=1

continue

else:

for f in range(m+n):

M[piv, f], M[l, f] = M[l, f], M[piv, f]

20

for k in range(m):

if k!= l and M[k, j] != 0:

for f in range(m+n):

M[k, f] ^= M[l, f]

j += 1

l += 1

if not invert_only:

M1 = M.copy()

return M[0:,:n], M[0:, n:], M1[0:l,:n], M1[0:l, n:], P, l

else:

if m !=n:

return False

if l != n:

return False

else:

return M[0:, n:]

def sample_invertible_matrix(n):

mat = np.matrix([[0]*n for _ in range(n)], dtype=np.int_)

t = 1

while True:

mat = random_matrix_F2(n, n)

t+=1

inv = linalg.gaussian_pivot_F2(mat, True)

if inv is False:

continue

return mat, inv

def sample_rank_r_matrix(n, r):

matRank = np.bmat([[np.identity(r), np.zeros((r, n-r))],

[np.zeros((n-r, r)), np.zeros((n-r, n-r))]])

(U, _), (V, _) = sample_invertible_matrix(n), sample_invertible_matrix(n)

return (U*matRank*V)%2

21

	Introduction
	Context, motivation and problematics
	My internship
	Organisation of this report
	Special thanks

	Quantum error correcting codes
	Basics about quantum mechanics
	Quantum error correcting codes
	Stabilizer codes

	Homological product of random codes
	Homological codes
	Product of random homological codes
	Proof sketch

	Generalisation of the result
	Invariants
	Rank
	Analytic rank
	Slice collection

	Weight of a matrix of a given rank
	Sum of rank 1 matrices
	Adding up columns

	Conclusion
	Work done
	Perspectives
	Context of the internship

	Appendix
	Misc proofs
	Sampling random matrices
	Code

