
L3 Internship report:

Walking along the infrastructures of real quadratic and pure cubic

�elds

Joël Felderho�

ENS de Lyon

Intership realized under the supervision of Pierre-Jean Spaenlehauer in

team CARAMBA, a joint project-team with

INRIA Nancy - Grand Est, CNRS and Université de Lorraine

Abstract

The SQUFOF algorithm, which heuristically �nds in time O(N
1
4) a factor of a number N , is

based on the walk over the infrastructure of the group class of the real quadratic �eld Q(
√
N).

The purpose of my internship was to investigate if such an algorithm could be generalized to other

number �elds of unit rank one: complex cubic and totally complex quartic �elds. During this

internship, after a study and an implementation of the classical SQUFOF algorithm, I studied

the reduction step of the walk over the infrastructure in the particular case of the pure cubic

�elds Q(3
√
D). In order to do that, I studied and implemented the Voronoï algorithm. This

implementation was followed by several tests.

1 Introduction

1.1 Context, motivations and problematic

The problem of factoring integers has theoretical and practical applications. The most common exam-
ple is the study of the security of the RSA public key cryptosystem. This system, which is used for
example in some implementations of the SSH protocol or in the E.M.V. standard for credit cards, is
based on the di�culty of the factoring problem. The RSA cryptosystem is based on two keys: a public
one to encrypt the messages and a private one to decrypt them. The private key can be found, given
the public key, by factoring a RSA number: a number N = p · q with p, q two large prime numbers
(about 1024 bits long).

The best algorithm for factoring RSA numbers known today is the general number �eld sieve,

whose complexity is heuristically sub-exponential: exp
((

3

√
64
9 + o(1)

)
(ln(N))

1
3 (ln(ln(N)))

2
3

)
. In this

algorithm, in order to factorize large integers (more than 500 bits long), one must be able to factorize
smaller numbers. This necessity justi�es the study of factorization algorithms which work well for a
large range of numbers. One of those algorithms is the SQUFOF algorithm, created by Daniel Shanks
in 1975. This algorithm computes a non-trivial divisor of a number D in a time in O(4

√
D) under

heuristic hypothesis. It is based on a research of a certain kind fractional ideals (ideals divided by
an integer) in the ring of algebraic integers of the number �eld Q(

√
D), where D is the number one

wants to factorize (or a small multiple of this number). One of the reason why this algorithm works is
that one can, by a simple algorithm, "skip" from one fractional ideal to another in a determined order:
we talk about walking along elements of the infrastructure of Q(

√
D). This is possible in the case of

Q(
√
D) because the free part of the group of invertible algebraic integers in this �eld is isomorphic to

Z.
There are two other kinds of number �elds which have the same property: the complex cubic �elds

and the totally complex quartic �elds. A natural question is then to ask if an algorithm analogous
to SQUFOF can be written for those kinds of �elds. The goal of this internship was to �nd out if
the SQUFOF algorithm could be generalized, and to implement a cubic and/or a quartic version of

1

SQUFOF if this is the case. In order to do that, I studied several algorithms used to walk along this
infrastructure. The original purpose of those algorithms was to �nd the regulator of the �elds, an
invariant used in a lot of modern number theoretic results, either algebraic or analytic.

1.2 State of art

The SQUFOF algorithm was �rst described in [6] and [7]. This algorithm is well known, and studied in
details in [4] and [9]. Originally, Shanks gave an interpretation in terms of continued fraction expansion
of the number

√
D where D is the discriminant of the �eld Q(

√
N), with N the positive integer we want

to factorize. In [9], H.C. Williams gives an algebraic approach to the reduction step of the SQUFOF
algorithm. This approach uses fundamental mathematical objects which enable us to think of a way
to generalize the algorithm.

Infrastructures of cubic �elds are however less documented. In [9], the reader is refered to an algo-
rithm called "the Voronoï's algorithm" for walking along the infrastructure. Although this algorithm
is cited in [9] and improved in [8], I did not �nd any implementation in the litterature. Williams, in
[9] refers to Voronoï's thesis, but this thesis and its transcription in a book were written in Russian.
I achieved to �nd a translated version [5]. In this book, there is a description and explanation of
the Voronoï algorithm but there were several typographic mistakes in the translation, and the theory
was more general that just the �nding of the next step of the walk in the infrastructure. In fact, the
Voronoï algorithm is the historical technique to compute the regulator of a pure cubic �eld.

1.3 My internship

The �rst part of my 6 weeks internship was to understand the SQUFOF algorithm. I mainly worked
on its interpretation in terms of binary quadratic forms. My next task was to reformulate results I
understood in terms of walks on the fractional ideals of the �eld. Thereafter I tried to generalize the
algorithm in the case of pure cubic �elds Q(3

√
D). In parallel, I realized and tested an implementation

of SQUFOF in c++.
The �rst part of the generalization of SQUFOF was to get an algorithm to walk along the infras-

tructure. I found out that the paper [3] presented a general algorithm to do that, the only missing part
was the "skip" step. I then studied and implemented the algorithm of Voronoï, found in the book [5].
After the implementation, I made several tests on my implementation in order to compare it to the
one used to produce the results in [2]. I tested the speed of my implementation and, as the research
of the regulator was the primary goal of the Voronoï algorithm, I looked at the number of steps made
by my implmentation to �nd it.

By lack of time, the only �elds I studied during my internship were a special case of complex cubic
�elds: the pure cubic �elds Q(3

√
D). I only had the time to study and implement the �rst part of

a "cubic squfof" : the walk among the infrastructure. Another reason why the SQUFOF algorithm
works is that information about the factorization of D is stored in a certain kind of fractional ideals
(called ambiguous ideals). In order to write a cubic SQUFOF one would have to be sure that this
property generalizes to the case of pure cubic �eld.

1.4 Organization of this report

In Section 2 of this report, I describe some number theoretic notions and theorems which will be used
in the algorithms I will study in the next parts. More precisely, I will introduce the notions of number
�eld and their infrastructures. Section 3 will focus on the special case of real quadratic �elds, in order
to explain the particularities of this kind of �elds which enable us to create an algorithm like SQUFOF.
Then I will describe precisely this algorithm. In Section 4 I will study the Voronoï algorithm, which
is the equivalent of the "skip" step in SQUFOF. Since this algorithm deals with three dimensional
lattices, it is very geometric so in order to explain it I will introduce several classical results about
positive de�nite binary quadratic forms. I will conclude this report in Section 5 by a presentation of
my productions in the context of my internship: my implementations of the SQUFOF and Voronoï
algorithm and some benchmarks.

2

2 Number �elds and infrastructures

2.1 De�nitions

I start by introducing the mathematical objects which will be used through this report.

De�nition 1. A number �eld is a �nite algebraic extension of Q, i.e. a �eld K is a number �eld if it
contains Q and it is a �nite dimensional vector space over Q.

A number �eld is isomorphic to the quotient of the ring Q[X] by an irreducible polynomial. Then
the degree of the extension is the degree of this polynomial. As Q has characteristic 0, it is a perfect
�eld: any number �eld K is a separable extension of Q, so by the primitive element theorem, there
exists θ ∈ K such as K = Q(θ), and θ can be chosen as the root of an irreducible monic polynomial
with coe�cients in Z.

In what follows we set K = Q[X]/Π (Π ∈ Q[X] an irreducible polynomial) a number �eld of degree
n = [K : Q] = deg(Π). I will let α denote the class of X in K.

De�nition-Proposition 2. [4, Theorem 4.1.3] If K is a number �eld, the set

OK = {x ∈ K | ∃P ∈ Z[X] monic s.t. P (x) = 0}

is a ring, called the ring of integers of K.

This ring is the generalization of the notion of integers in Q, and we will see in the following that
this ring and more especially the fractional ideals of this ring have a central role in the structure of
the number �eld K.

De�nition 3. A set If ⊂ K is a fractional ideal of OK if there exists d ∈ Z such that dIf is an ideal
of OK .

Basically, fractional ideals are ideals of OK divided by integers. These objects can be endowed with
a group structure. The following statements describe this structure.

De�nition 4 (Multiplication law on ideals). If I and J are fractional ideals, we denote by IJ the
smallest fractional ideal of OK containing {xy, x ∈ I, y ∈ J}.

Proposition 5. [4, Lemma 4.6.7] Every fractional ideal I of OK is invertible, with inverse

I−1 = {x ∈ K | xI ⊆ OK}.

De�nition 6. Two fractional ideals I, J are said to be equivalent if there exist γ ∈ K such as I = γ ·J .
This relation is an equivalence relation and I will denote it by I ∼ J .

A large amount of information about the number �eld can be extracted from the quotient of the
group of fractional ideals of OK by the equivalence relation de�ned in De�nition 6.

De�nition-Theorem 7 (Class group of K). [4, Theorem 4.9.2] The set {fractional ideals of OK}/ ∼
is a group for the multiplication law on ideals. This group is called the class group of K and is �nite.

Proposition 8. As the extension K/Q is separable, there are exactly n embeddings (injective morphism
�xing Q) of K in C, I will denote them σ1, . . . , σn. Each of those embeddings maps α to one of the
root of Π.

Proof. The n embeddings sending α on one of the root of Π are clearly embeddings of K to C. Let us
show that these are the only embeddings. If σ is an embedding from K to C, it is only de�ned by its
value on α because K = Q[1, α, α2, . . . , αn−1]. As σ is a �eld morphism, Π(σ(α)) = σ (Π(α)) = 0 so
σ(α) must be a root of Π.

As Π ∈ Q[X], every complex root of Π comes with its complex conjugate. I will denote σ1, . . . , σs
the embeddings which sends α on a real root the others will be denoted σs+1 . . . σs+2t (I will talk about
real and complex embeddings).

Since each complex embedding comes with its conjugate, I will choose the numeration such that
for any i ∈ {1, . . . , t}, σs+i = σs+t+i.

3

De�nition 9. The pair (s, t) is called the signature of K.

Example 10. A real quadratic �eld Q[X]/(X2−D) with D a positive non-square integer has signature
(2, 0) and its two embeddings in C are α 7→

√
D and α 7→ −

√
D.

Example 11. The �eld Q[X]/(X2 + X + 1) has the signature (0, 1) and its only complex pair of

conjugate embeddings are X 7→ j and X 7→ j2 with j = e
2iπ
3 .

Those notions are useful to de�ne a certain number of tools for the study of number �elds.

De�nition 12 (Norm). The norm N(x) ∈ Q of x ∈ K is the product:

N(x) =

n∏
i=1

σi(x).

Proposition 13. Every algebraic integer in a number �eld has an integer norm.

Proof. Let θ be an element of K. Let A ∈ Z[X] be its minimal polynomial, let m be its degree. By [4,
Prop 4.3.2], the characteristic polynomial of θ is then Pθ(X) =

∏n
i=1(X − σi(θ)) = A(X)

n
m ∈ Q[X].

Since θ is a root of Pθ, the minimal polynomial of θ divides Pθ. If one takes θ ∈ OK , the minimal
monic polynomial of θ is monic in Z[X], so is Pθ. Therefore, N(θ) = ±Pθ(0) ∈ Z.

De�nition-Proposition 14 (Unit Group). The unit group of the ring of integers OK of a �eld K is
the group of invertible elements of OK . I denote it by U(K). Units in K are exactly the elements in
OK of norm ±1.

Proof. Let θ be an element of norm ±1 in OK . Let us denote Pθ(X) = Xn +
∑n−1

i=1 aiX
i ± 1. Then

Pθ(θ) = 0 = θn +
∑n−1

i=1 aiθ
i ± 1. So θn +

∑n−1
i=1 aiθ

i = ±1 = θ
(
θn−1 +

∑n−1
i=1 aiθ

i−1
)
. As for all i

ai ∈ Z,
(
θn−1 +

∑n−1
i=1 aiθ

i−1
)
∈ OK . Hence θ is invertible.

Conversely, if θ ∈ OK is invertible, N(θ) ·N(θ−1) = N(θ · θ−1) = N(1) = 1 so N(θ) is invertible in
Z, therefore N(θ) = ±1.

2.2 Dirichlet unit theorem and logarithmic embedding

One cornerstone of the SQUFOF algorithm is the Dirichlet unit theorem, which describe the unit group
in terms of the signature.

Theorem 15 (Dirichlet unit theorem). [4, Theorem 4.9.5] For a number �eld K of signature (s, t) the
group U(K) is isomorphic to

Z/mZ× Zs+t−1

where Z/mZ correspond to the group of roots of the unity of K, i.e. the elements x ∈ K such that
∃l ∈ Z>0, x

l = 1.

The quantity s+ t− 1 is the rank of the unit group.
The SQUFOF algorithm uses the fact that the rank of the unit group of any real quadratic �eld is

1. In order to generalize this algorithm, I will study �elds with unit group of rank one. There are 3
types of such �elds:

• The real quadratic �elds with signature (2, 0).

• The complex cubic �elds with signature (1, 1).

• The totally complex quartic �elds with signature (0, 2).

4

Figure 1: Some points of the logarithmic embedding of the ring of integers of Q(
√

23).

Let us now introduce a function used to represent our number �eld in a more graphical way. This
morphism is called the logarithmic embedding of K.

Φ : K∗ −→ Rs+t
x 7−→ (log(|σ1(x)|), . . . , log(|σs(x)|), 2 log(|σs+1(x)|), . . . 2 log(|σs+t(x)|)).

The kernel of Φ is the set of roots of unity ([4, Theorem 4.9.7]), that is to say that any point of K
will be represented modulo the action of this group.

Proposition 16. The logarithmic embedding of a point x ∈ K is located on the a�ne hyperplane
de�ned by the equation

∑s+t
i=1 xi = log |N(x)|.

Proof. Let x be an element of K∗, then

s+t∑
i=1

Φ(x)i = log

(
n∏
i=1

|σi(x)|

)
= log

(∣∣∣∣∣
n∏
i=1

σi(x)

∣∣∣∣∣
)

= log |N(x)| .

As said before, in order to generalize SQUFOF, we want to consider only �elds whose rank of unit
group is 1. From now on, I will suppose that this is the case for the �eld K.

Remark 17. As the logarithmic embedding is a group morphism from a multiplicative group to an
additive one, the multiplication of a set by an element of K is equivalent to a translation of his image
by the logarithmic embedding.

Proposition 18. The image of a fractional ideal via the logarithmic embedding is invariant by trans-
lation by the image of an unit.

Proof. Let µ be an unit of OK and I be an ideal of OK (the proof generalize without any major
modi�cation to the case where I is a fractional ideal). I want to prove that I = µI. As I is an ideal,
µI ⊂ I. Each element x ∈ I can be written µ · µ−1 · x. As µ−1 ∈ OK by de�nition of µ, µ−1 · x ∈ I so
x ∈ µI. Therefore I ⊂ µI. In conclusion, I = µI.

De�nition 19. For a number �eld with unit rank one, a fundamental unit, denoted by the letter ε, is
a generator of the free part of the unit group, that is to say an element such that U(K)/〈ε〉 is a �nite
cyclic group.

5

During my internship I only had time to study the real quadratic �elds, and a special case of
complex cubic �elds: the pure cubic �elds. Therefore they are the only cases I will deal with in this
report. From now, I am assuming that the �eld I am working with is either a real quadratic �eld
Q[X]/(X2 −D) or a pure cubic �eld Q[X]/(X3 −D).

2.3 Real quadratic �elds and pure cubic �elds

In the case of real quadratic �elds, I will denote σ1 : α 7→
√
D and σ2 : α 7→ −

√
D. I will identify this

�eld with the �eld induced by its �rst embedding Q(
√
D) in the rest of the report.

In the case of pure cubic �elds, I will denote σ1 : α 7→ 3
√
D, σ2 : α 7→ j 3

√
D and σ3 : α 7→ j2 3

√
D. I

will identify this �eld with the �eld induced by its �rst embedding Q(3
√
D) in the rest of the report.

According to the Dirichlet theorem (Theorem 15), one can see that those �elds have an unit group
of rank one.

De�nition-Proposition 20. [4, 4.9.8] For quadratic and pure cubic �elds, with the previous notations,
the regulator of the �eld is de�ned as R = log(|σ1(ε)|). This value does not depend on the choice of
the fundamental unit of the �eld.

De�nition 21. Let If denote a fractional ideal of OK . An element x ∈ If is called a minimum if
there is no other point y ∈ If such as log |σ1(x)| > log |σ1(y)| and log |σ2(x)| > log |σ2(y)|.

ε

R

−R

Figure 2: The points in black are the minimums.

De�nition 22. A fractional ideal I is said to be reduced if it contains 1 and if 1 is a minimum in it.

The interest of minimal elements of an ideal occurs when one wants to browse the reduced ideals
equivalent to another reduced ideal. We have the following proposition:

Proposition 23. If I is a reduced ideal and θ is a minimal element in I, then 1
θ I is a reduced ideal.

Proof. Let's suppose that I is reduced and 1
θ I is not. There is an element x ∈ 1

θ I such that |σ1(x)| <
1 and |σ2(x)| < 1. By de�nition of 1

θ I, there exists x′ ∈ I such that x = x′/θ. Then for k =
1, 2, |σk(x′)/σk(θ)| < 1 then |σk(x′)| < |σk(θ)|. This is a contradiction because θ is minimal in I.

The SQUFOF algorithm browses the di�erent reduced ideals equivalent to a given fractional ideal
I, this is done by browsing the minimums of I in a certain order.

De�nition 24. Two minimal elements θ1, θ2 ∈ I such that |σ1(θ1)| < |σ1(θ2)| are said to be adjacent
if there is no other minimal element η ∈ I such that |σ1(θ1)| < |σ1(η)| < |σ1(θ2)|.

6

2.4 Infrastructures of number �elds with unit rank 1

With the previous de�nitions, one can see that there is a chain of adjacent minimal elements in a
reduced fractional ideal I. H.C. Williams has shown in [9, Lemma 3.8] that in fact every minimal
element of I is on this chain. The main part of the SQUFOF algorithm is the walk on this chain, there
is an algorithm to do that in the general case: Algorithm 2.1.

Algorithm 2.1 Calculate the chain of minimal elements of a reduced fractional ideal

Require: I reduced fractional ideal of OK
1: i← 1
2: I1 ← I
3: Θ1 ← 1
4: loop

5: Compute θi the minimum adjacent to 1 in Ii . Reduction step
6: Θi+1 ← Θi · θ−1i
7: Ii+1 ← 1

θi
Ii

8: i← i+ 1
9: end loop

Proposition 25. [3, Prop 2.12] The sequence (Θn)n≥1 is the chain of adjacent minimal elements of
OK .

Proposition 26. If Ii is a reduced fractional ideal of OK , so is Ii+1.

Proof. This proposition if a direct application of Proposition 23.

Proposition 27. [3, Prop 2.6] The sequence (θn)n≥1 is periodic, and the sequence (Θn)n≥1 is periodic
modulo the fundamental unit of the �eld.

De�nition 28. The reduction operator, denoted by ρ is the application of a step of the above loop.
With this notation (Ii)i≥1 = (ρ(i)(I))i≥1.

The di�culty of the algorithm holds in the reduction step. Even if this algorithm is generic for all
the number �elds of unit rank one, this step will di�er in function of the type of �eld. This algorithm
produce chains of reduced fractional ideals, and every reduced ideal equivalent (for ∼) to an ideal I
is produced by the above algorithm in the sequence (Ii)i≥1 because of the minimality of the θis. This
structure is called the infrastructure of the class group of the number �eld.

In the next section I will explain see how the walk along this infrastructure in the �eld Q(
√
D)

enables us to �nd a divisor of D.

3 The SQUFOF algorithm

The SQUFOF (Shank's SQuare FOrm Factorization) algorithm was discovered by Shanks in 1975 and

can compute a non-trivial factor of a RSA number D in time (under heuristics hypothesis) O(D
1
4) [4,

8.7 p. 437]. This algorithm has the advantage that it uses only numbers less that
√
D, which allows it

to be implemented on small calculators [4, 8.7 p. 438].
This algorithm can be studied with many points of view, including in terms of integer binary

quadratic forms or in terms of continued fractions (which is the fastest implementation). In this
report, in order to create the link between the di�erent kinds of �elds, I will describe this algorithm in
term of walk on the infrastructure of a quadratic �eld.

3.1 Result on quadratic �elds

De�nition 29. A real quadratic �eld is a �eld K of the form Q[X]/(X2 − D) with D a squarefree
positive integer.

7

In this section I will denote by K a quadratic number �eld of discriminant D, with D a square free
integer. Moreover, I will consider the ideals of OK modulo the multiplicative action of Q.

Theorem 30. [4, Theorem 5.2.9] Every ideal I ⊆ OK is of the form aZ+ −b+
√
D

2 Z with a ∈ Z\{0}, b ∈
Z and b2 ≡ D mod 4a. Therefore any ideal of OK can be represented by a triplet of integers (a, b, c)
with the property that b2 − 4ac = D. I will note I ≈ (a, b, c).

De�nition 31. A triplet (a, b, c) with b2−4ac is said to be in reduced form if
∣∣∣√D − |2a|∣∣∣ < b <

√
D.

In this case, a = min(dI ∩ Z>0).

Remark 32. With this notation, OK ≈ (1, b, b
2−D
4) where b is the greatest integer less than

√
D such

that b2 ≡ D mod 4.

Since the ideals are studied modulo the action of Q, any fractional ideal is represented by some
triplet (a, b, c) too, refering to the triplet representing dI where d = min{n ∈ Z>0, nI ⊂ OK}.

This property enables us to give an explicit formula to the multiplication law of two fractional
ideals. In this report, we will only need the formula for squaring.

Proposition 33. [4, Lemma 5.4.5] If I ≈ (a, b, c) then I2 ≈ (A,B,C) with

A =
a2

d2
, B = b− 2acv

d
, C =

B2 −D
4A

where d = a ∧ b and u, v the coe�cients such that ua+ vb = d.

The principle of the SQUFOF algorithm holds on the following result:

Theorem 34. If I is a fractional ideal such as I2 = OK (such ideal are called ambiguous) then
min(I ∩ Z>0) divides D.

Proof. I take a reduced triplet representing the ideal I ≈ (a, b, c). As I2 = OK , by looking at the �rst

number of the triplet, one can see that (with the same notation than in Proposition 33) a2

d2
= 1 so a | b.

Then a | b2 − 4ac = D.
Then our goal will be to �nd an ideal "square root" of OK in order to �nd a non-trivial divisor of

D. We will use for that another property.

Proposition 35. [4, Prop 8.7.1] If there is a principal fractional ideal I such that there exists J with
J2 = I then there is an ideal N on the reduction cycle of J such that N2 = OK .

Algorithm 3.1 SQUFOF algorithm

1: I ≈ (a, b, c)← OK . I associate the fractional ideals and their representation
2: while a is not a square or a is a square and (

√
a, b, c

√
a) is principal do

3: I ← ρ (I) . With the notation of the Def 28.
4: end while

5: I ≈ (a, b, c)← (
√
a, b, c

√
a)

6: while I2 6= OK do

7: I ← ρ (I)
8: end while

9: return a

The principle of the SQUFOF algorithm is to walk along the cycle starting from OK to �nd a
square ideal i.e. a fractional principal ideal I of the form J2 where J is not principal, and then when
one is found, we calculate J and we walk along its cycle until we �nd an ideal N whose square is equal
to OK . The detection of a square ideal and the computation of its square root are very easy. An ideal
is square if and only if its minimal integer is a square (which is easily tested by a comparison to the
square of the integer part of its square root), and the square root of (a2, B,C) is (a,B, aC) [4][8.7].
For a more precise description, see Algorithm 3.1.

8

3.2 The reduction step

We saw in the previous section that the most di�cult part of the algorithm was the reduction step.
The algorithm for the case of the quadratic �eld was described by Hugh C. Williams in [9]. I will
associate every element x ∈ K with its �rst real embedding, and denote by x′ (I will talk about
conjugate element) its second real embedding.

Algorithm 3.2 Calculate ρ(I)

Require: I reduced fractional ideal of OK
1: Let (1, µ) be a basis of I as Z-module
2: ν ← µ− bµ′c
3: if ν < −1/2 then
4: ψ ← ν + 1
5: else

6: ψ ← ν
7: end if

8: return 1
ψ I

Remark 36. When the square root of a square ideal is calculated in SQUFOF, we are not assured to �nd
a reduced ideal. But it was shown in [9, 4] that the application of this algorithm on a non-reduced ideal
I will return a reduced ideal equivalent in a logarithmic number of step in c = min {|x| , x ∈ I \ {0}}∩Z.

4 Voronoï algorithm for pure cubic �elds

To generalize the SQUFOF algorithm to complex cubic �elds, the �rst logical step is to describe
a reduction algorithm. I studied the reduction algorithm created by Voronoï during his thesis and
mainly described in [5] (the original text was written in Russian). By lack of time, I focused on a
particular case: the pure cubic �elds.

De�nition 37. A pure cubic �eld is a �eld K of the form Q[X]/(X3−D) with D a cube-free integer.

In order to simplify the notations and the calculus, I will identify the �eldK with its real embedding
Q(3
√
D). I will denote respectively by x′ ∈ C and x′′ ∈ C the conjugate elements of x ∈ Q(3

√
D), that

is to say respectively σ2(x) and σ3(x). One can notice that x′x′′ = |x′|2 = |x′′|2. In everything that
follows, I will denote α = 3

√
D.

4.1 Positive binary quadratic form

Before the description of the algorithm, I have to introduce some classical results for positive binary
quadratic forms.

De�nition 38. A binary quadratic form f is a quadratic homogeneous bivariate polynomial, in other
terms a function of the form f(X,Y) = aX2 + 2bXY + cY 2 with a, b, c ∈ R. This form is said to be
positive if b2 − 4ac < 0 i.e. if ∀X,Y ∈ R2 \ {(0, 0)}, f(X,Y) > 0. I will denote the forms in simpler
way: f : X,Y 7→ aX2 + 2bXY + cY 2 = (a, b, c).

The positive quadratic forms are deeply related to basis of vector in R2:

Proposition 39. The positive binary quadratic form (PBQF) are associated bijectively with pairs of
vectors of R2 up to rotation by the mapping (~u,~v) 7→ ‖X~u+ Y ~v‖2 = ‖~u‖2X2 + 2〈~u,~v〉XY + ‖~v‖2 Y 2.

Proof. Follows immediately from the de�nition of the mapping.
The change of basis of the space can be interpreted in terms of changing the positive binary

quadratic form.

9

Proposition 40. The group GL2(Z) acts on the right on the set of binary quadratic forms in the
following way:

f = (A,B,C), P =

(
a b
c d

)
∈ GL2(Z)

fP : X,Y 7→ f

(
P

(
X
Y

))
= f(aX + bY, cX + dY).

If the form is positive, one can see this operation as the right action of P on (~u,~v). Indeed, some
calculus gives us that the form associated with the pair (a~u+ c~v, b~u+ d~v) is

fP (X,Y) = (a2 ‖~u‖2 + c2 ‖~v‖2 + 2ac〈~u,~v〉)X2

+(b2 ‖~u‖2 + d2 ‖~v‖2 + 2bd〈~u,~v〉)Y 2

+2XY (ab ‖~u‖2 + cd ‖~v‖2 + (ad+ bc)〈~u,~v〉)
= ‖a~u+ c~v‖2X2 + 2〈a~u+ c~v, b~u+ d~v〉XY + ‖b~u+ d~v‖2 Y 2

= ‖X(a~u+ c~v) + Y (b~u+ d~v)‖2

4.2 The Voronoï algorithm

The function d used in the Algorithm 4.1 is the following:

d
(
t+ t′α+ t′′α2

)
= t2 − t′t′′D + (t′′2D − tt′)α+ (t′2 − tt′′)α2. (1)

Direct computation shows that for x ∈ K, d(x) = |σ2(x)|2. One can �nd this algorithm very
obscure at �rst glance. In this section I will explain all the steps in order to clarify it. The Voronoï
algorithm can be interpreted in a geometric way.

I will represent a point x = t+ t′α+ t′′α2, (t, t′, t′′) ∈ Q3 by the R3 point:

Map(x) = (x,=(x′),<(x′)) =

(
x,
x′ − x′′

2i
,
x′ + x′′

2

)
=

(
t+ t′α+ t′′α2,

√
3

2
(t′α− t′′α2), t+

1

2
(t′α+ t′′α2)

)
.

This map is linear and injective. In what follows I will identify Map(x) and x. With this mapping,
the ideal I is seen as a lattice of R3, that is to say a subset of R3 of the form Z~b1 + Z~b2 + Z~b3 with
(~b1, ~b2, ~b3) a basis of R3.

Proposition 41. A point θ is minimal in I if and only if there is no other point of I in the normed

body of θ, that is to say the set Cθ =
{

(x, y, z), |x| ≤ |θ| , y2 + z2 ≤ <(θ′)2 + =(θ′)2
}
(see Fig 3).

θ•

Figure 3: The normed body of θ

Proof. Let θ be a point of I.

θ minimal in I ⇔ @x ∈ I, log |x| < log |θ| and log(
∣∣x′∣∣2) < log(|θ|2)

⇔ @x ∈ I, |x| < |θ| and |x|2 < |θ|2

⇔ @x ∈ I, |x| < |θ| and <(x′)2 + =(x′)2 < <(θ′)2 + =(θ′)2

⇔ @x ∈ I,Map(x) ∈ Cθ

At the beginning of the algorithm, one will want to be able to act only on the "non rational" part
of the vector. For that one will project the points on the xy-plane in parallel to ~01 = (1, 0, 1). The

10

Algorithm 4.1 Voronoï algorithm. Calculate ρ(I) for fractional ideals in pure cubic �elds

Require: I reduced fractional ideal of OK
1: Let (1, φ, ψ) be a basis of I as Z module.

2: Let σ,m,m′,m′′, n, n′, n′′ be integers such as φ = m+m′α+m′′α2

σ and ψ = n+n′α+n′′α2

σ .
3: A← m′2 +m′m′′α+m′′2α2

4: B ← m′n′ + (m′n′′ +m′′n′)α2 +m′′n′′α2

5: C ← n′2 + n′n′′α+ n′′2α2

6: while not (B > 0 and A−B > 0 and C −B > 0) do . Reduction loop
7: if B < 0 then
8: (A,B,C)← (C,−B,A)
9: end if

10: P ← I2
11: if A < C then

12: m← bBAc

13: P ←
(

1 −m
0 1

)
14: else if C < A then

15: m← bBC c

16: P ←
(

1 0
−m 1

)
17: end if

18: (A,B,C)← (A,B,C)P

19: (φ, ψ)← (φ, ψ)P

20: end while

21: Let σ,m,m′,m′′, n, n′, n′′ be integers like in the step 2 for the new φ and ψ.
22: b← m′−m′′α

σ , d← n′−n′′α
σ

23: for all M ∈
[
I2,−I2,

(
1 1
−1 0

)
,

(
−1 −1
1 0

)
,

(
0 −1
1 1

)
,

(
0 1
−1 −1

)]
do . Triangle choice loop

24: (x, y)← (b, d) ·M
25: if x > 0 and y < 0 then
26: (b, d)← (x, y)
27: (φ, ψ)← (φ, ψ) ·M
28: break
29: end if

30: end for

31: (φ, ψ)← (φ− bφc, ψ − bψc)
32: Let σ,m,m′,m′′, n, n′, n′′ be integers like in the step 2 for the new φ and ψ.
33: a← 2m−m′α−m′′α

2σ , c← 2n−n′α−n′′α
2σ

34: if a < 1/2 then
35: θ0 ← φ
36: else

37: θ0 ← 1− φ
38: end if

39: if c < 1/2 then
40: θ1 ← ψ
41: else

42: θ1 ← 1− ψ
43: end if

44: if ψ − φ > 0 then
45: if c− a < 1/2 then
46: θ2 ← ψ − φ
47: else

48: θ2 ← 1− (ψ − φ)
49: end if

50: else

11

51: if a− c < 1/2 then
52: θ2 ← φ− ψ
53: else

54: θ2 ← 1− (φ− ψ)
55: end if

56: end if

57: if d(θ2) > d(θ0) and d(θ2) > d(θ1) and φ+ ψ < 1 and a+ c < 1/2 then
58: L← [(d(θ0), θ0), (d(θ2), θ2), (d(φ+ ψ), φ+ ψ)] . where d is de�ned in (1).
59: else

60: L← [(d(θ0), θ0), (d(θ1), θ1), (d(θ2), θ2)]
61: end if

62: Sort L
63: θg ← L[1], θh ← L[2]
64: return (1, θh/θg, 1/θg) . a Z-basis of 1

θg
I.

image of a point by this operation is called the puncture of the point. It can be seen as a rotation
of our point of view aligning two points when they are di�erent by a rational. The exact formula for
(t, t′, t′′) ∈ Q3 is:

Punct(t+ t′α+ t′′α2) =

(
3

2
(t′α+ t′′α2),

√
3

2
(t′α− t′′α)

)
.

One can see that this projection holds all the information about the non-rational part of a point.
The application of Punct on I provides us a 2 dimensional lattice where 1 is identi�ed to the origin.

I will call this lattice L. The goal of the �rst part of the algorithm is to �nd the points adjacent to 0
in this two dimensional lattice. This goal is achieved by �nding what Voronoï calls the reduced Zelling
triangle of the lattice.

De�nition 42. The reduced Zelling triangle of a lattice L is the basis (~u,~v) of L such that the triangle
formed with the origin is an acute triangle containing the negative x axis (see Fig 5).

Calculus shows that the form (A,B,C) is the PBQF associated with the vectors Punct(φ) and

Punct(ψ) divided by 3α2

σ2 . Finding the reduced Zelling triangle is done by reducing (A,B,C) in the
reduction loop (Line 6 Algorithm 4.1). This loop is a variant of the Euclid algorithm, for the reduction
of positive de�nite forms.

Proposition 43. The fact that (A,B,C) is the PBQF associated with the vectors Punct(φ) and
Punct(ψ) is an invariant of the reduction loop.

Proof. This proposition is a direct application of Proposition 40, plus the fact that the map x 7→
Punct(x) is linear.

Proposition 44. At the end of the reduction loop, the triangle 0φψ is an acute triangle.

Proof. This proposition is the reformulation of the conditions for ending the loop (line 6 Algorithm 4.1).

• B > 0⇔ 〈φ, ψ〉 > 0⇔ φ̂0ψ ∈ [−π, π]

• A−B > 0⇔ 〈φ, φ〉 − 〈φ, ψ〉 > 0⇔ 〈φ, φ− ψ〉 > 0⇔ ̂φ0(φ− ψ) ∈ [−π, π]

• C −B > 0⇔ 〈ψ,ψ〉 − 〈φ, ψ〉 > 0⇔ 〈ψ,ψ − φ〉 > 0⇔ ̂ψ0(φ− ψ) ∈ [−π, π]

So the only thing remaining to show to see that our reduction loop really �nds the reduced Zelling
triangle of the lattice is to know if its ends. In fact, this loop ends very shortly.

Proposition 45. The reduction loop ends in at most 2 +

⌈
log

(
A√

|B2−4AC|

)⌉
steps.

12

•

φ
ψ

−φ
−ψ

φ− ψ

ψ − φ

Figure 4: The Zelling hexagon of the lattice

•0

y

−x

φ

ψ

b

d

Figure 5: The reduced Zelling triangle

Proof. The reduction loops is just the Euclid's algorithm for the reduction of positive de�ned forms,
which is described in a slightly di�erent way in [4]. The proof of the complexity of the algorithm should
be found in [4, Prop 5.4.3].

By construction, the numbers b and d are the y-coordinate of the puncture of φ and ψ (divided
by a positive number). The triangle choice loop (Line 23 Algorithm 4.1) chooses the triangle which
contains the negative x-axis by testing the six acute triangles of the Zelling hexagon of the projection
of I.

The interest in �nding the reduced Zelling triangle of the projection of I holds in the following
theorem:

Theorem 46. [5, �60 p. 276] If one denotes by (1, 0) and (0, 1) the vertices of the Zelling triangle of
the projection of the reduced ideal I, then the puncture of the minimum of I adjacent to 1 is one of the
following points : (1, 0), (0, 1), (−1, 0), (0,−1), (1,−1), (−1, 1), (1, 1).

Once one has found the reduced Zelling triangle, s-he has found the seven possible "class" of points
where the minimal point adjacent to 1 is in I. Necessarily, the minimal point adjacent to 1 is in
[−1, 1] \ {0} because it will have a negative abscissa in the logarithmic embedding. Since −1 is a root
of unity, one can choose the minimal point to be in [0, 1]. Then s-he has restrained the set of possible
minimal points to the points such that their puncture have their coordinates described in theorem 46
and are in [0, 1]. Those points are obtained by setting φ← φ−bφc, ψ ← ψ−bψc and by the following
transformations, assuming that φ > ψ (the symmetric case is done by exchanging φ− ψ by ψ − φ):

• θ(1)0 = φ

• θ(2)0 = 1− φ

• θ(1)1 = ψ

• θ(2)1 = 1− ψ

• θ(1)2 = φ− ψ

• θ(2)2 = 1− (φ− ψ)

• θ(3)2 = φ+ ψ.

Theorem 47. [5, �60 p. 276] The minimum point adjacent to 1 in I is the closest point with the
puncture described in the De�nition 42 to the axis x.

The last part of the algorithm discriminates the points in order to �nd the closest to the x-axis
by doing few comparisons. This si done by compairing their coordinates. It would be possible to just
order the seven points below in increasing d but the function d can be long to compute as it can deal

13

with big integers. The reader can look at [5, �61 p 285] for further details about the discrimination of

the θ
(j)
i .

5 Implementation and perspectives

5.1 Implementations

All the code I produced during my internship is at disposition at the address https://gitlab.

aliens-lyon.fr/jfelderh under LGPL.
During my internship, I realized an implementation of SQUFOF in C++, with the formalism of

binary quadratic form. This implementation achieves to �nd the factor 52562646845771 of the number
134289440104690210848996569051 (97 bits) in 15s.

I implemented the algorithm of Voronoï in the Magma programming language which has the advan-
tage of containing all the mathematical primitives needed: fractional ideals, basis, exact representation
of rational, etc... The main di�culty of this task was that if the reduction algorithm is well documented
in the case of real quadratic �elds, this is not the case for pure cubic �elds. I only found one reference
about the Voronoï algorithm ([5, �61]), and there were several mistakes (mainly typographic errors).
The main work done during the internship was to �nd some bibliography about this algorithm (which
was not so easy because the original book and thesis are written in Russian) and to understand its
geometric signi�cance.

The algorithm of Voronoï has been implemented in 1976 for [2]. This article presents a table of
the number of steps of the Voronoï algorithm to calculate the regulator of pure cubic �elds in function
of the integer D in Q[X]/(X3 − D). I produced a similar table (see Fig. 6 in appendix), but the
results I observed were a little bit di�erent than the results of [2]. As I can't have access to their
implementation, this is hard to say why the results I had are di�erent than theirs.

I implementted SQUFOF and Voronoï's algorithm in a way which does not require �oating-point
numbers and precision estimates: all the computations are done on either integers or rational numbers
(using the Magma backend for Voronoï and the c++ library GMP for SQUFOF). In the case of the
Voronoï algorithm, I had to rewrite some primitives in order to keep rational numbers. I implemented
the computation of the �oor part of the cubic root of a number and positivity test on algebraic cubic
numbers. The only approximations used are for plotting the numbers with the logarithmic embedding
and for integer parts of squareroots in SQUFOF.

5.2 Experimental results of my Voronoï algorithm implementation

Fig. 6 represents the number of step made and the time took by my implementation of the Voronoï
algorithm to �nd the regulator of the pure cubic �eld Q(3

√
D). I only represent the value of D whose

associated pure cubic �elds have a regulator greater than all the previous ones.
This table is similar to the one in [2], but one can see some di�erences on the number of steps

done by the algorithm. For example, in [2], for D = 1721, they calculated 3320 steps, when with my
implementation I calculated 3300 or for D = 8429, they had 15481 steps when I have 15446. This
di�erence is small but hard to explain because the Voronoï algorithm is a deterministic algorithm.
As in the general case my algorithm does less reduction steps, there are two possibilities: either my
implementation misses some minimal elements or the implementation of [2] does not always choose
a minimal element: this is an error that occured many times during the debugging phase of my
implementation of the algorithm of Voronoï. As I didn't �nd the code used in [2], I can't compare it
to my implementation in order to �nd di�erences.

5.3 Perspectives

The initial goal of this internship was to create a "cubic SQUFOF". There are four main parts in the
construction of the SQUFOF algorithm : �rstly one must be able to walk among the infrastructure of
the class group of our �eld, secondly s-he must be able to detect if an ideal I in the unit cycle is the
square of another ideal J , and to compute this ideal J if this is the case. The third part is that one

14

https://gitlab.aliens-lyon.fr/jfelderh
https://gitlab.aliens-lyon.fr/jfelderh

D Steps Time (s) D Steps Time (s) D Steps Time (s)

2 1 0.01 2283 3950 8.46 28517 50553 778.05
3 3 0 2927 4073 8.99 29063 56565 1001.67
5 4 0.01 3543 4067 9.05 32213 63460 1314.17
6 5 0 3557 5398 12.89 34607 66722 1493.3
15 7 0.01 3821 6393 16.08 36821 67055 1508.41
23 21 0.03 3921 7983 21.97 38039 70493 1675.93
29 35 0.06 4523 8519 24.49 39129 77024 2071.47
41 50 0.08 5153 8571 25.15 39521 81380 2368.06
69 99 0.17 5433 10662 35.25 43863 89669 2948.7
137 119 0.2 6999 12314 44.71 54293 95207 3444.97
167 206 0.36 8093 13533 53.14 55901 101895 4038.38
227 204 0.36 8429 15446 66.2 56993 103747 4246.08
239 392 0.71 10037 15939 71.32 60887 115603 5458.2
411 487 0.89 10067 16314 73.33 62889 119286 5886.53
419 638 1.17 11621 22862 140.3 66431 132697 7547.25
447 714 1.32 14897 25182 173.78 67829 136163 8056.18
573 878 1.64 15261 25147 174.44 72227 136460 8106.4
771 1197 2.26 15527 27895 212.95 72617 148588 9875.83
951 1361 2.6 17669 28345 223.93 76259 152381 10441.44
1163 1589 3.13 19391 38281 413.98 84629 159499 11645.49
1301 2319 4.62 21839 41933 513.08 88661 169395 13526.99
1721 3300 6.82 22469 42593 527.62
2003 3236 6.74 26417 50223 771.69

Figure 6: Number of steps of my implementation of the algorithm of Voronoï for some values of D

must be able to know if there is always an ambiguous ideal in the cycle of a square root of a principal
ideal, then to know if the fact that an ideal is ambiguous contains information on the factorization of
the discriminant of the �eld.

The Voronoï algorithm is the algorithm used to walk among the infrastructure, but in order to
create a cubic SQUFOF, there are 4 algorithmic questions left to answer:

• How to detect if a cubic fractional ideal is a square?

• If this is the case, how to calculate its square root?

• Is there always an ambiguous ideal in the reduction cycle of the square root of a principal ideal?

• Are information about the factorization of D contained in the ambiguous ideals of OQ(3√D)
?

References

[1] S. Bai, P. Gaudry, A. Kruppa, E. Thomé, and P. Zimmermann. Factorisation of rsa-220 with
cado-nfs. 2016.

[2] P. Barrucand, H. C. Williams, and L. Baniuk. A computational technique for determining the class
number of a pure cubic �eld. Mathematics of Computation, 30(134):312, 1976.

[3] J. Buchmann and H. C. Williams. On the infrastructure of the principal ideal class of an algebraic
number �eld of unit rank one. Mathematics of Computation, 50(182):569, 1988.

[4] H. Cohen. A course in computational algebraic number theory. Springer, 1995.

[5] B. N. Delone and D. K. Faddeev. The theory of irrationalities of the third degree. American
Mathematical Soc., 1978.

15

[6] D. Shanks. Analysis and improvement of the continued fraction method of factorization. American
Mathematical Society Notices, 22:1, 1975.

[7] D. Shanks. Squfof notes. Unpublished manuscript, 30, 2004. transcribed by S. McMath.

[8] H. Williams, G. Cormack, and E. Seah. Calculation of the regulator of a pure cubic �eld. Mathe-
matics of Computation, 34(150):567�611, 1980.

[9] H. C. Williams. Continued fractions and number-theoretic computations. Rocky Mountain Journal
of Mathematics, 15(2):621�656, 1985.

16

6 Appendix

6.1 Context of my internship

I realized my internship in the team CARAMBA of the LORIA under the supervision of Pierre-Jean
Spaenlehauer. The LORIA (laboratoire lorrain de recherche en informatique et ses applications) is
located in the campus science and technology of the Université de Lorraine.

The team CARAMBA, led by Emmanuel Thomé, has two main research themes : the general
number �eld sieve algorithm (the most e�cient algorithm know today for factoring integers) and the
study of algebraic curves for cryptography. They also study computer algebra problematics, such as
solving polynomial systems and Gröebner basis. It is composed of �ve INRIA researchers, one CNRS
researcher, one professor, an assistant professor, three PhD students and two postdoctoral fellows.
One of their subject of research is the improvement of CADO-NFS, an implementation of the general
number �eld under licence LGPL-2.1+ which they used to factorize RSA-220 (220 decimal digits, 729
bits) in 2016 [1].

6.2 Code listing

6.2.1 SQUFOF algorithm (c++)

1 #include <iostream>

2 #include <cmath>

3 #include "BinQuadForm.hpp"

4

5 using namespace std;

6

7 bool isSquare(Integer n){

8 if(n <= 0)

9 return false;

10 Integer a = (Integer)sqrt(n);

11 return a*a == n;

12 }

13

14 bool isIn(const Set& Q, Integer n){

15 return Q.find(n) != Q.end();

16 }

17

18 int main()

19 {

20 Integer n;

21 cin >> n;

22

23 Integer factor = 1;

24 Integer k = 0;

25

26 while(factor == 1 or k%factor == 0){

27 k++;

28 initialize(n*k);

29

30 BinQuadForm f;

31

32 Set Q;

33 cout << "Factorising D=" << D << endl;

34 cout << "Unit form cycle" << endl;

35 do{

36 if(f.a != 1 and f.a*f.a <= sqrtDInt){

37 Q.insert(f.a);

38 }

39

40 f = reduce(f);

41 }while(not (isSquare(f.a) and !isIn(Q, (Integer)sqrt(f.a))));

42

43 if(f.a == 1){

17

44 cerr << "Fail !" << endl;

45 continue;

46 }

47

48 cout << endl;

49

50 BinQuadForm g((Integer)sqrt(f.a), -f.b);

51

52 cout << "reduction" << endl;

53

54 while(not g.reduced()){

55 g = reduce(g);

56 }

57

58 cout << "Cycle" << endl;

59

60 Integer b1 = g.b;

61

62 do{

63 b1 = g.b;

64 g = reduce(g);

65 }while(b1 != g.b);

66

67 if(g.a % 2 == 0){

68 factor = abs(g.a/2);

69 }else{

70 factor = abs(g.a);

71 }

72

73 Integer fact = factor%k==0?factor/k:factor;

74

75 cout << "Factor of D = " << n << " : " << fact << endl << "Error ? " << n%fact << endl;

76

77 }

78

79 return 0;

80 }

1 #ifndef BINQUAD_HPP

2 #define BINQUAD_HPP

3

4 #include <cmath>

5 #include <ostream>

6 #include <set>

7 #include <gmpxx.h>

8

9 using Integer = mpz_class;

10 using Scalar = mpf_class;

11 using Set = std::set<Integer>;

12

13 extern Integer N;

14

15 inline Integer discriminant(Integer n){ // n is supposed squarefree

16 if(n % 4 == 1)

17 return n;

18 else

19 return 4*n;

20 }

21

22 extern Integer D;//number to reduce

23

24 extern Scalar sqrtD; // approx of sqrt(D)

25 extern Integer sqrtDInt; // integer approx of sqrt(D)

26

27 inline void initialize(Integer n){

28 N = n;

18

29 D = discriminant(n);

30 sqrtD = sqrt(D);

31 sqrtDInt = (Integer)sqrtD;

32 }

33

34 Integer getC(Integer a, Integer b);

35

36 struct BinQuadForm{

37 BinQuadForm(); // the unit binquadform

38

39 BinQuadForm(Integer _a, Integer _b);

40

41 Integer disc() const;

42

43 bool reduced() const;

44

45 Integer a, b, c;

46 };

47

48

49 std::ostream& operator<<(std::ostream&, const BinQuadForm&);

50

51 BinQuadForm reduce(const BinQuadForm & f);

52

53 #endif

1 #include "BinQuadForm.hpp"

2

3 using namespace std;

4

5 Integer N = 0;

6 Integer D = 0;

7 Scalar sqrtD = 0;

8 Integer sqrtDInt = 0;

9

10 Integer getC(Integer a, Integer b){

11 return (Integer)((b*b-D)/(4*a));

12 }

13

14 BinQuadForm::BinQuadForm(){ // the unit binquadform

15 a = 1;

16 if(D%4 == 1){

17 b = 2*(Integer)((sqrtDInt-1)/2) +1;

18 }else{

19 b = 2*(Integer)(sqrtDInt/2);

20 }

21

22

23 c = getC(a, b);

24 }

25

26 BinQuadForm::BinQuadForm(Integer _a, Integer _b) : a(_a), b(_b), c(getC(_a, _b)){

27 }

28

29 Integer BinQuadForm::disc() const{

30 return b*b-4*a*c;

31 }

32

33 bool BinQuadForm::reduced() const{

34 return (abs(sqrtD - 2*abs(a)) <= b) and (b <= sqrtD);

35 }

36

37 BinQuadForm reduce(const BinQuadForm & f){

38 BinQuadForm g;

39 Integer r = (-f.b) % (2*abs(f.c));

40 if(abs(f.c) > sqrt(D)){

19

41 if(r > abs(f.c))

42 r -= 2*f.c;

43 }else{

44

45 if(r <= sqrtD - 2*f.c){

46 r += ceil(((sqrtD - 2*f.c - r)/(2*abs(f.c))))*2*abs(f.c);

47 }

48

49 if(r > sqrt(D)){

50 r -= 2*abs(f.c)*ceil((r-sqrtD)/(2*abs(f.c)));

51 }

52

53 while(r <= sqrtD - 2*f.c){

54 r += 2*abs(f.c);

55 }

56 while(r > sqrtD){

57 r -= 2*abs(f.c);

58 }

59 }

60

61 return BinQuadForm(f.c, r);

62 }

63

64 std::ostream& operator<<(std::ostream& stream, const BinQuadForm& f){

65 stream << f.a << " " << f.b << " " << f.c;

66 return stream;

67 }

6.2.2 The Voronoï algorithm (Magma)

1 D := 26417;

2

3 P := [-D, 0, 0, 1];

4

5 prec := 10000;

6 precOut := 10;

7

8 Poly<x> := PolynomialAlgebra(Rationals());

9

10 Q<z> := NumberField(Polynomial(P));

11

12 R := IntegerRing(Q);

13

14 function RealVal(x)

15 return RealField(prec)!Conjugates(x)[1];

16 end function;

17

18 //returns true if x1 < D^1/3 < x2 for a polynomial a, b, c with discriminant discr

19 function TestRac(a, b, discr)

20 delta := 8*D*a^3 + b^3 + 3*b*discr;

21 return (delta/(3*b^2 + discr))^2 lt discr;

22 end function;

23

24 // exact test if x gt 0 for x a cubic number

25 function GtZero(x)

26 if Q!x eq Q!0 then

27 return false;

28 end if;

29

30 L := Eltseq(Q!x);

31

32 //polynomial associated to x L[1]+L[2]x+L[3]x^2

33 S := elt<Poly | Eltseq(Q!x)>;

34

35 // if this is a constant, easy

36 if Degree(S) eq 0 then

20

37 return L[1] gt 0;

38 end if;

39

40 // si this is linear, easy too

41 if Degree(S) eq 1 then

42 if L[2] gt 0 then

43 return D gt -(L[1]/L[2])^3;

44 else

45 return D lt -(L[1]/L[2])^3;

46 end if;

47 end if;

48 // at this point, the degree of the polynomial is 2

49 discr := Discriminant(S);

50

51

52 // if the poly is defined positive or negative, that is easy

53 if discr lt 0 then

54 return LeadingCoefficient(S) gt 0;

55 end if;

56

57 // if the discriminant has one root, we just look if the number is the root of it

58 if discr eq 0 then

59 if x eq Q!(-L[2]/(2*L[3])) then

60 return false;

61 else

62 return LeadingCoefficient(S) gt 0;

63 end if;

64 end if;

65 //else, we look if it is between the roots

66 if LeadingCoefficient(S) gt 0 then

67 return not TestRac(L[3], L[2], discr);

68 else

69 return TestRac(L[3], L[2], discr);

70 end if;

71 end function;

72

73 //calculate floor(alpha*sqrt3(Delt)) without loss of precision with the newton method

74 function FloorSq3(alpha, Delt)

75 if alpha eq 0 then

76 return 0;

77 end if;

78

79 pr := Floor(Abs(Log(Abs(alpha*Delt)))/Log(10))+5;

80 u := RealField(pr)!13;

81 u1 := RealField(pr)!0;

82 while Abs(u-u1) gt 0.1 do

83 u1 := RealField(pr)!u;

84 u := u1 - (u1^3-Delt*alpha^3)/(3*u1^2);

85 end while;

86

87 N:= Floor(u);

88 return Floor(u);

89 end function;

90

91

92 function VAbs(x)

93 if GtZero(x) then

94 return x;

95 else

96 return -x;

97 end if;

98 end function;

99

100

101 // floor without approximations

102 function PartEntiere(x)

21

103 if GtZero(1-VAbs(x)) then

104 if GtZero(x) or x eq Q!0 then

105 return Q!0;

106 else

107 return Q!-1;

108 end if;

109 end if;

110 L := Eltseq(Q!x);

111

112 n1 := FloorSq3(L[3], (D)^2);

113 n2 := FloorSq3(L[2], D);

114 n3 := Floor(RationalField()!L[1]);

115 N := n1+n2+n3-2;

116 //There can be a difference

117 while not((GtZero(x-Q!N) or x eq Q!N) and GtZero(Q!(N+1)-x)) do

118 N +:= 1;

119 end while;

120 assert((GtZero(x-Q!N) or x eq Q!N) and GtZero(Q!(N+1)-x));

121 return N;

122 end function;

123

124 //log embedding

125 procedure plot(x)

126 C := Conjugates(x);

127 print RealField(precOut)!Log(Abs(RealField(prec)!C[1])), RealField(precOut)!(2*Log(RealField(prec)!Abs(ComplexField(prec)!C[2])));

128 end procedure;

129

130 function swap(x, y)

131 return y, x;

132 end function;

133

134 //squre of the distance to the x-axis

135 function rho2(x)

136 t := Eltseq(Q!x);

137 return t[1]^2 - t[2]*t[3]*D + (D*t[3]^2-t[1]*t[2])*z + (t[2]^2 - t[3]*t[1])*z^2;

138 end function;

139

140

141 function Comp(x, y)

142 if x[1] eq y[1] then

143 return 0;

144 end if;

145 if GtZero(x[1]-y[1]) then

146 return 1;

147 else

148 return -1;

149 end if;

150 end function;

151

152

153 I := ideal<R|1>;

154

155 B := Basis(I);

156

157

158 phi := B[2];

159 psi := B[3];

160

161 minAct := R!1;

162 premierTour := true;

163

164 compt := 0;

165

166 // While we haven't found an unit (exact precision)

167 while Norm(minAct) ne 1 or premierTour do

168 compt +:= 1;

22

169 premierTour := false;

170 //plot(minAct);

171 print compt;

172 sigma := Denominator(I);

173

174 phiS := Eltseq(phi);

175 psiS := Eltseq(psi);

176

177 for a in phiS do

178 sigma *:= Denominator(sigma*a);

179 end for;

180

181 for a in psiS do

182 sigma *:= Denominator(sigma*a);

183 end for;

184

185 for i in [1, 2, 3] do

186 psiS[i] *:= sigma;

187 phiS[i] *:= sigma;

188 end for;

189

190 if phiS[1]*psiS[2]-phiS[2]*psiS[1] lt 0 then

191 phi, psi := swap(phi, psi);

192 phiS, psiS := swap(phiS, psiS);

193 end if;

194

195 A := phiS[2]^2+phiS[2]*phiS[3]*z+(z^2)*(phiS[3]^2);

196 B := phiS[2]*psiS[2] + (phiS[2]*psiS[3]+phiS[3]*psiS[2])*z/2 + phiS[3]*psiS[3]*(z^2);

197 C := psiS[2]^2+psiS[2]*psiS[3]*z+(z^2)*(psiS[3]^2);

198

199

200 while not (GtZero(B) and GtZero(A-B) and GtZero(C-B)) do

201 if not GtZero(B) then

202 A, C := swap(A, C);

203 B := -B;

204 phi, psi := swap(phi, psi);

205 phi *:= -1;

206 end if;

207 if GtZero(C-A) then

208 m := -R!PartEntiere(B/A);

209 B1 := B;

210 B := B + m*A;

211 C := C + 2*m*B1 + A*m^2;

212 //modify C -> modify psi

213 psi := psi + m*phi;

214 else

215 m := -R!PartEntiere(B/C);

216 B1 := B;

217 B := B + m*C;

218 A := A + 2*m*B1 + C*m^2;

219 //modify A -> modify phi

220 phi := phi + m*psi;

221 end if;

222 end while;

223

224 assert(I eq ideal<R| 1, phi, psi>);

225

226

227 phiS := Eltseq(sigma*phi);

228 psiS := Eltseq(sigma*psi);

229

230 b := (phiS[2]-phiS[3]*z)/sigma;

231 d := (psiS[2]-psiS[3]*z)/sigma;

232

233 l := [Matrix(Q, [[1, 0], [0, 1]]), Matrix(Q, [[-1, 0], [0, -1]]), Matrix([[1, 1], [-1, 0]]),

234 Matrix([[-1, -1], [1, 0]]), Matrix([[0, -1], [1, 1]]), Matrix([[0, 1], [-1, -1]])];

23

235 //warning ! difference between the article and this !

236 vect := Vector([Q!phi, Q!psi]);

237 vVal := Vector([b, d]);

238 q := 0;

239 for M in l do

240 v := vVal*M;

241 x := v[1];

242 y := v[2];

243 if GtZero(x) and not GtZero(y) then

244 v := vect*M;

245 phi := v[1];

246 psi := v[2];

247 q +:=1;

248 end if;

249 end for;

250

251 assert(q eq 1);

252

253 psi -:= PartEntiere(psi);

254 phi -:= PartEntiere(phi);

255

256 phiS := Eltseq(sigma*phi);

257 psiS := Eltseq(sigma*psi);

258

259 assert(I eq ideal<R| 1, phi, psi>);

260

261 a := ((2*(phiS[1]) - z*phiS[2] - phiS[3]*z^2)/(2*sigma));

262 c := ((2*(psiS[1]) - z*psiS[2] - psiS[3]*z^2)/(2*sigma));

263

264 if GtZero(1/2 - a) then

265 theta0 := phi;

266 else

267 theta0 := 1-phi;

268 end if;

269

270 if GtZero(1/2 - c) then

271 theta1 := psi;

272 else

273 theta1 := 1-psi;

274 end if;

275

276 if GtZero(psi-phi) then

277 if GtZero(1/2-(c-a)) then

278 theta2 := psi-phi;

279 else

280 theta2 := 1-(psi-phi);

281 end if;

282 else

283 if GtZero(1/2-(a-c)) then

284 theta2 := phi-psi;

285 else

286 theta2 := 1-(phi-psi);

287 end if;

288 end if;

289

290 r0 := rho2(theta0);

291 r1 := rho2(theta1);

292 r2 := rho2(theta2);

293

294 if GtZero(r2-r0) and GtZero(r2-r1) and

295 GtZero(1-(phi+psi)) and GtZero(1/2-(a+c)) then

296 L := [<r0, theta0, 0>, <r2, theta2, 2>, <rho2((phi+psi)), phi+psi, 3>];

297 else

298 L := [<r0, theta0, 0>, <r1, theta1, 1>, <r2, theta2, 2>];

299 end if;

300 L := Sort(L, Comp);

24

301

302 thetag := L[1][2];

303 thetah := L[2][2];

304

305 minAct /:= thetag;

306 assert(I eq ideal<R| 1, thetag, thetah>);

307

308 I := I/thetag;

309 phi := thetah/thetag;

310 psi := 1/thetag;

311 end while;

312

313 print "cycle size : ", compt;

25

	Introduction
	Context, motivations and problematic
	State of art
	My internship
	Organization of this report

	Number fields and infrastructures
	Definitions
	Dirichlet unit theorem and logarithmic embedding
	Real quadratic fields and pure cubic fields
	Infrastructures of number fields with unit rank 1

	The SQUFOF algorithm
	Result on quadratic fields
	The reduction step

	Voronoï algorithm for pure cubic fields
	Positive binary quadratic form
	The Voronoï algorithm

	Implementation and perspectives
	Implementations
	Experimental results of my Voronoï algorithm implementation
	Perspectives

	Appendix
	Context of my internship
	Code listing
	SQUFOF algorithm (c++)
	The Voronoï algorithm (Magma)

