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1 Introduction

The security of cryptographic protocols is based on various algorithmic assumptions, the one providing security

of the most widely implemented protocols at the time of the is the Discrete Logarithm on elliptic curves (whose

extensive description can be found in [Gal12]). Those problems are known to be solved in polynomial time

by a quantum attacker via Shor’s algorithm [Sho94], which motivates the study of quantum-resistant security

assumptions. This line of research has seen a further increase of interest because of the call for proposals

of quantum-resistant cryptosystems of the American National Institute of Standardisation of Technology in

2017 [CSD17].

The most promising assumptions come from problems over lattices, namely variants of the Learning With Er-

ror problems [Reg05]. These assumptions, aside from being allegedly quantum-secure, allow to create advanced

cryptographic primitives such as homomorphic encryption [Gen09] or Attribute Based Encryption [GVW15].

Those security assumptions have been used for creating quantum-resistant protocols and some of them are to

be standardized by the NIST [CSD20].

Due to the cipher size of the protocols based on standard LWE assumptions, structured lattices are used in

practical implementations (e.g., for most of the lattice-based NIST candidates), see for example NTRU [HPS98]

or Ring-LWE [Reg10]. The structured lattice assumptions are hoped to offer the same level of security as the

unstructured ones, while providing smaller cipher sizes and acceleration for the underlying algorithms.

The non-equivalence between the security assumptions on structured lattices and unstructured ones moti-

vates the specific cryptanalysis of the latter. In particular we will focus here on module-lattices, that are a class

of structured lattices coming from number theory which are used by the lattice-based NIST finalists.

1.1 State of the art

Module lattices specific algorithms have been described by various authors: in [FP96], Fieker and Pohst de-

scribed an enumeration algorithm for module lattice along with a version of the LLL algorithm which did

not give guarantees about the size of the output (while being faster than the unstructured LLL described

in [LLL82]). Over the last few years, improvements on the specific cryptanalysis of Module lattices have been

achieved. Specific algorithms to solve the approximate shortest vector problem in the case of rank-1 module

lattices (also called ideal lattices) were proposed [CDW17, PMHS19, BRL20].

For the case of rank-2 and greater rank module lattices, there have been several partial attempts. In [KL17],

Kim and Lee proposed a module-LLL algorithm in the case of biquadratic fields. In [LPMSW19] and [MSD20]

two versions of a module-LLL algorithm were described for modules of rank n ≥ 2. In both articles, the rank-2

case is identified as the main step to overcome in order to build a full module-LLL algorithm working at all

rank.

1.2 Contributions

Our first contribution is Proposition 8 which states the existence of a low algebraic norm vector in the module

OK~u +OK~v given that the gap between N(~u) and N(~v) is large enough. Here OK is the ring of integers of a
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number field K, ~u and ~v are vectors over K2 and N(~u) and N(~v) denote the algebraic norms of ~u and ~v, which

correspond to the volumes of the lattice that they span. The new result does not rely on heuristic assumptions

and gives bounds on the algebraic norm. It is not directly comparable as [LPMSW19, Cor 4.8].

The main work of this paper is the study of the main step of LLL algorithm (the Gauss-Lagrange algorithm)

in the case of number fields. In the classical LLL [LLL82], this algorithm uses as a central operation the

rounding of real numbers, that is to say the ability to find an integer at distance at most 1
2 to any real number

in reasonable time. This ability is closely related to the existence of the Euclidean division algorithm for Q,

which has an equivalent in some number fields. A natural way to try to extend the LLL algorithm to module

lattices is then to focus on the case of fields that have a Euclidean Division algorithm for the algebraic norm.

We proved in Section 4 that a textbook generalisation of the Gauss Lagrange algorithm for fields with

Euclidean division can lead to arbitrary bad output for rank-2 modules. We also investigate in Section 5 a

more powerful Euclidean division oracle (namely one that does not only output an integer at algebraic distance

at most 1, but indeed the closest possible), and prove that such oracle is not a good candidate for building a

Module Gauss-Lagrange algorithm either.

These results could seem contradictory with [KL17] in which the authors describe an Euclidean division

based module-LLL algorithm for biquadratic fields. In Section 6 we make an analysis of those results and prove

that our results and the one of Kim and Lee are not in contradiction since the notion of size considered here

and the one considered in [KL17] differ.

2 Generalities

2.1 Lattices

We start by recalling the basic definitions of the objects used in this paper. Proofs of the results presented in

this section can be found in [Coh96].

Def 1. A lattice is a discrete subgroup L of Rn. It is given by m linearly independant vectors b1, . . . , bm called

its basis. Then L =
∑m
i=1 Z · bi.

If m = n, L is said full-rank.

In the latter, we will only consider full rank lattices. A lattice can have several basis, therefore it is important

to study its invariants. One of them is its volume.

Def 2. Let L be a full-rank lattice given by a basis b1, . . . , bn. Then its volume is the quantity |det ([b1, . . . , bn])|.
This quantity is homogeneous to a volume in dimension n ([L]n) and is invariant by changing of basis, so it

depends only on L. The volume of L is denoted vol(L).

Another invariant for a lattice L is its shortest vector’s length.

Def 3. For a lattice L and a norm ‖·‖, the quantity λ1,‖·‖(L) is defined to be inf {‖x‖ , x ∈ L \ {0}}.
By discreteness of L, this quantity is achieved.

In the latter, if not precised otherwise, we use ‖·‖ = ‖·‖2. Lattices and their shortest vectors pays an

important role in modern cryptography as several problems related to them are computationally hard.

Def 4. Let γ(n) a function of n, the γ-Approx Shortest Vector problem ask, given an integer n and basis of a

full-rank lattice L in Zn, to find a vector x ∈ L such that ‖x‖ ≤ γ(n)λ1(L).

This problem have been studied for a wide range of γ(n), for some (e.g., γ(n) = poly(n)) it is known to be

NP-Complete and for other (e.g., γ(n) = 2O(n)) it can be solved in polytime by the LLL algorithm [LLL82].

The volume of the lattice gives an approximation of how short a vector can be in a lattice. This result is

given by the Minkowski’s theorem.
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Theorem 1 (Minkowski). Let L be a full rank lattice in Rn. Then λ1(L) ≤ √n · vol(L)1/n.

In order to be more precise about this bound, one can define a constant called the Hermite constant to

control precisely the gap between λ1(L) and vol(L)1/n.

Def 5. The (normalized) Hermite constant δn is defined as follow:

δn = inf
L

{
λ1(L)

det(L)1/n

}
,

where the infimum is taken over all lattices of rank n and exists by Minkowski’s theorem.

It is known that this constant is Θ(
√
n) (see [CS88]).

2.2 Number theory definitions

In practice in many cryptographic schemes, structured lattices are used. Structured lattices are often taken

from number-theoretics objects. We here recall some number-theoretics facts and definitions, more detailled

studies and proofs can be found in [Coh96].

Let K be a number field of degree d = r1 + 2r2, OKbe its ring of integers. The field K embbeds in Cd via

its canonical embedding

σ : K −→ Cd

x 7−→ σi(x)

with σi : K → R for i = 1 . . . r1, σi : K → C for i = r1 + 1 . . . d and σr1+i = σr1+r2+i.

The span of σ(K) is not Cd since the last 2r2 coordinates of σ have relations. It spans the subspace

E =
{
y ∈ Rr1 × C2r2 , yr1+i = yr1+r2+i

}
.

The algebraic norm is defined as NK/Q(x) =
∏d
i=1 σi(x) ∈ Q. As this norm grows when d grows, it is

useful to also define the normalized algebraic norm : ÑK/Q = |NK/Q|1/d which is homogeneous to a distance.

The discriminant of the field ∆K is then the volume of the image of OK by σ1 as a Z-lattice. It is a

the measure of a d dimensional volume, we define the normalized discriminant by ∆̃K = ∆
1/d
K , which is

homogeneous to a distance.

In order to work in a complete space, we define KR = K ⊗ R ∼= E. The field K is dense in KR and all

continuous constructions (namely σ,NK/Q, ÑK/Q) can be extended to KR.

The ring KR is not a field, since it contains zero-divisor (any element which has a zero coefficient is a zero

divisor) so a different notion of linear independance is needed.

Def 6. A familly b1, . . . , bn in KR
m is said to be KR-linearly independat if there exist no α1, . . . , αn ∈ KR not

all equal to zero such that
∑n
i=1 αi · bi = 0.2

The lp norms of elements of KR are defined as ‖x‖p = ‖σ(x)‖p. Usual inequalities applies for those norms.

Proposition 2. If x ∈ KR, then ÑK/Q(x) ≤ ‖x‖∞ and ÑK/Q(x) ≤ 1√
d
‖x‖2.

Proof. The first inequality comes from the fact that NK/Q(x) is the product of all the coordinates of x, the

second is the arithmetico-geometric inequality.

From now on, when the context is clear we shall denote NK/Q by N .

Proposition 3. The quantities Ñ and ‖·‖∞ are not equivalent. In fact, an element of KR can have an arbitrarily

large lp norm with fixed algebraic norm if r1 + r2 > 1.

Proof. As r1 + r2 > 1, by Dirichlet’s unit theorem OK× is an infinite discrete group, hence the lp norms of their

elements are unbounded, but for all x ∈ OK×, we have that |Ñ(x)| = 1.

1in the litterature, such as in [LPMSW19], the discriminant is defined to be ∆2
K . Our choice is made for the sake of homogeneity

2This definition is stronger than the fact that any bi is not in the span of the others.
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Proposition 4. If r1+r2 > 1, the algebraic norm does not follow the triangular inequality: there exist x, y ∈ KR

such that N(x+y)
N(x)+N(y) is arbitrarily large.

Proof. In this paper, we will give our proofs in the case KR ∼= R2. Our proofs can be extended to any field as

long as r1 + r2 > 1.

Let ε > 0, and take x =

[
ε

1/ε

]
and y =

[
1/ε

ε

]
.

Then N(x) = N(y) = 1, and the algebraic norm of the sum N(x+ y) = (ε+ 1/ε)2 →ε→0 ∞ can be as large

as wanted.

The above example shows exactly the kind of pathological cases that can occur with the algebraic norm:

when the vectors are not balanced, the additive behavior of the algebraic norm becomes erratic.

We can define a notion of balanced elements of KR in the following way.

Def 7. Let γ ≥ 1. An element x ∈ KR is said γ-balanced if ‖x‖∞ ≤ γ · Ñ(x)

These elements are the elements “on which Ñ and ‖·‖∞ are equivalent”. Then the (normalized) algebraic

norm is sub-linear for those elements.

Proposition 5. If x, y ∈ KR are γ-balanced, then

Ñ(x+ y) ≤ γ ·
(
Ñ(x) + Ñ(y)

)
Proof. Let x, y two γ-balanced element of KR , then

Ñ(x+ y) ≤ ‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞ ≤ γ ·
(
Ñ(x) + Ñ(y)

)

It is argued in [CDPR16] that if K is a cyclotomic field, then for any x ∈ K, it is possible to find an element

u ∈ OK× such that ux is γ-reduced.

Theorem 6 ([CDPR16]). (Heuristic) Take K = Q(ζm) with m = pk a prime power and x ∈ K. Then there

exists a classical subexponential/quantum polytime algorithm outputing u ∈ OK× such that ux is exp
(
Õ(
√
m)
)

-

balanced.

2.3 Module Lattices

If K is a field of degree d and OK its ring of integers, then take b1, . . . , bn fractional ideals and b1, . . . , bn ∈ KR
m

KR-linearly independant, then M =
∑n
i=1 bi · bi is a module lattice. We call n its rank and m its coordinate

dimension. We call (bi, bi)i=1...n a pseudo-basis of M .

In the following, we will always assume that the considered modules are finitely generated and torsion free.

The module M can be embedded into Cdm via the cannonical embedding. We can then define the lp norm of

any element of M .

We can also define the algebraic norm of elements of M in the following way:

N(x) =

d∏
i=1

√√√√ m∑
j=1

|σi(xj)|2,

so that if d = 1, then N(x) = ‖x‖2, and if m = 1, then N(x) = NK/Q(x).

3 Rank-2 SVP

In order to create a proper LLL algorithm for module lattices, we have to find a way to make an algorithm

similar to Gauss-Lagrange reduction work in the case of module lattices. The central step of the algorithm is

to take two vectors and to reduce one relatively to the other.
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3.1 For Z : the Gauss-Lagrange algorithm

In order to find short vectors in a Z lattice spanned by the basis v1 =

[
a

b

]
, v2 =

[
c

d

]
with ‖v1‖ < ‖v2‖, the

Gauss-Lagrange algorithm is often used. The procedure is summarised in Algorithm 3.1.

Algorithm 3.1 Gauss-Lagrange algorithm

1: procedure Gauss-Lagrange(v1, v2 ∈ Z2 with ‖v2‖2 < ‖v1‖2)

2: Let B1 = ‖v1‖22
3: Let B2 = ‖v2‖22
4: while B2 < B1 do

5: Swap v1 and v2

6: B1 ← B2

7: Let µ← 〈v1, v2〉 /B1

8: v2 ← v2 − bµe · v1 . Reduction of v2 by v1

9: Let B2 = ‖v2‖22
10: return v1, v2

One can note that the main part of the algorithm is to compute the reduction of v2 by v1. This is done

by taking the closest integer of 〈v1, v2〉 / ‖v1‖2. This step can be rewritten as follows: if
r1 = B2

1 r12 = 〈v1, v2〉
0 r2 = B2

2

is the R factor of the QR factorisation of v1, v2, then Step 8 of Alg 3.1 is making the Euclidean division of r1,2

by r1. Hence in order to find shorts vector in rank-2 OK lattices, a possible approach would be to generalize

the Gauss-Lagrange algorithm for the algebraic norm.

3.2 General results for OK-lattices

In [LPMSW19, Section 4], the R part of the QR representation of b1, b2 ∈ KR
2 is taken, and a short algebraic

norm vector is found by taking combinations of b1 and b2 with coefficients in b1 and b2.

Namely, the following 2× 2 matrix: (
a b

0 c

)
with a, b, c ∈ KR

is considered and they try to find (u, v) ∈ b1 × b2 such that the vector

[
u · a+ v · b

v · c

]
has small algebraic norm.

We are going to study these rank-2 OK-modules. To simplify our study, we can apply [Coh00, Corol-

lary 1.2.25] in order to suppose that b1 = OK . In the context of our use of rank-2 OK-modules (a divide and

swap algorithm in the module-LLL algorithm of [LPMSW19]), we will have N(a) > N(c)N(b2), we can then

divide all the columns of M by a for the normalization. The module we will be looking at in the remaining will

then be of this form:

OK
[

1

0

]
+ a

[
b

c

]
with b, c ∈ KR and N(a)N(c) < 1

We will be looking for a vector in this module-lattice whose algebraic norm is < 1. The first thing to ask

is if finding such a vector X =

[
u+ vb

vc

]
is possible. Then if it is possible, what are the values for u, v that we

can consider?

We first need to link the (normalized) algebraic norm of a vector to its infinite norm, it is summarized in

the following lemma.
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Lemma 7. If x ∈ KR
m, then Ñ(x) ≤ √m ‖x‖∞.

Proof. We have that:

N(x) =

d∏
i=1

√√√√ m∑
j=1

|σi(xj)|2 ≤
d∏
i=1

√√√√ m∑
j=1

‖x‖2∞ =

d∏
i=1

√
m ‖x‖∞

=
(√
m ‖x‖∞

)d
By taking the dth root we get Ñ(x) ≤ √m ‖x‖∞.

That leads us to Proposition 8.

Proposition 8. Consider the OK-module M =

[
1

0

]
+ a

[
b

c

]
.

Then if Ñ(c) < d

Ñ(a)·δ22d·∆̃
2
K

, there exist x ∈M such that Ñ(x) <
√

2 ‖x‖ < 1.

I.e., there exist u, v ∈ OK × a such that 1 ≤ Ñ(v) <
δ22d
d · Ñ(a) · ∆̃2

K and

Ñ

([
u+ v · b
v · c

])
<
√

2 ·
∥∥∥∥∥
[
u+ v · b
v · c

]∥∥∥∥∥
∞

< 1

Proof. Consider the rank-2 OK-module Mt = OK
[

1

0

]
+ a

[
b

t · c

]
where t > 0 is to be chosen later.

The volume of Mt as a Z-lattice is N(tc) ·∆K ·N(a)∆K = ∆2
K ·N(a)td ·N(c).

By Minkowski’s theorem, there exists (u, v) ∈ (OK , a) \ {(0, 0)} such that∥∥∥∥∥
[
u+ v · b
v · tc

]∥∥∥∥∥
∞

≤ δ2d
(
td ·N(a) ·N(c) ·∆2

K

) 1
2d = δ2d

√
t · Ñ(a) · Ñ(c) · ∆̃2

K

. In particular, we can choose t = d

δ22d·Ñ(a)·Ñ(c)·∆̃2
K

which is > 1 by hypothesis, and then

∥∥∥∥∥
[
u+ v · b
v · tc

]∥∥∥∥∥
∞

< 1/
√

2.

We know that

∥∥∥∥∥
[
u+ v · b
v · c

]∥∥∥∥∥
∞

≤
∥∥∥∥∥
[
u+ v · b
v · tc

]∥∥∥∥∥
∞

< 1/
√

2, since t ≥ 1. And then by Lemma 7, we get

Ñ

([
u+ v · b
v · c

])
≤
√

2 ·
∥∥∥∥∥
[
u+ v · b
v · c

]∥∥∥∥∥
∞

< 1.

Now let us bound Ñ(v).

First, if v = 0, then

∥∥∥∥∥
[
u+ v · b
v · tc

]∥∥∥∥∥
∞

= ‖u‖∞ and N

([
u+ v · b
v · tc

])
= N(u) ∈ Z. as |N(u)| ≤ ‖u‖d∞ < 1, we

have u = 0, which is a contradiction with (u, v) 6= (0, 0). So v 6= 0, and hence as v ∈ OK , we have Ñ(v) ≥ 1.

On the other hand, we have ‖vtc‖∞ < 1/
√

2 and hence, by Lemma 7, we have Ñ(vtc) < 1.

We know that Ñ(vtc) = t · Ñ(v) · Ñ(c) = Ñ(v)·Ñ(c)·d
δ22d·Ñ(a)·Ñ(c)·∆̃2

K

, hence

Ñ(v) <
δ2
2d

d
· Ñ(a) · ∆̃2

K

which concludes the proof.

The bound on the algebraic norm of v in Prop 8 is not tight. In fact in order to create a Gauss-Lagrange

reduction for two elements of an OK-module, we would like to find v with the smallest possible algebraic norm.

The extreme case being v ∈ OK×. We say that K admits rank-2 Euclidean division in one step if for any vectors

b1, b2 we can find u, v such as in Prop 8 with v ∈ OK×. This is a very strong condition, namely it implies the

fact that K is Euclidean for the algebraic norm (see Section 4).

The result of Proposition 8 should be put in relation with Corollary 4.8 of [LPMSW19] which gives the same

kind of result. This proposition is rephrased next in order to match the notations of this article.

6



Proposition 9 ([LPMSW19], Cor 4.8 (Heuristic)). Let ε = 2−Õ(log(∆̃K)). There exists an algorithm which

given as input b ∈ KR and a an ideal of OK , output (u, v) ∈ OK × a such that

‖u+ bv‖∞ ≤ ε

‖v‖∞ ≤ 2Õ(d log(ρ(OK)))/d

where ρ(OK) is the covering radius of OK seen as a Z-lattice.

Let us rephrase Proposition 8 in the same way.

Proposition 10 ([LPMSW19], Cor 4.8 (Heuristic)). Let b ∈ KR and a an ideal of OK . There exists (u, v) ∈
OK × a such that

Ñ(u+ bv) ≤ ‖u+ bv‖∞ < 1/
√

2

Ñ(v) <
δ2
2d

d
· Ñ(a) · ∆̃2

K

where ρ(OK) is the covering radius of OK seen as a Z-lattice.

One can see that those two results are quite similar, but [LPMSW19, Cor. 4.8] gives bounds on the l∞

norm, is heuristic and constructive and Proposition 8 gives a worst bound on ‖u+ bv‖∞ but is not heuristic

and bound on the algebraic norm of v. The bound of Proposition 8 is thought asymptotically better than the

one of [LPMSW19, Cor. 4.8], since Õ(d log(ρ(OK))) = Ω(log ∆K) [LPMSW19, p.8].

One may ask whether the bound on the algebraic norm of v of Proposition 8 is optimal, but more work

seems required to answer this question.

4 The case of Euclidean fields

For the following, we are going to need the definition of a field Euclidean for the algebraic norm (or

Euclidean Field). An overview of those can be found in [Lez12].

Def 8. The field K is Euclidean for the algebraic norm if for any x ∈ K, there is an integer k ∈ OK such

that |N(x− k)| < 1.

The fact of being Euclidean implies in particular that the ring of integers OK is principal.

With those definitions, we can now prove the claimed proposition about the Euclidianity of fields that admits

rank-2 Euclidean division in one step.

Proposition 11. If for any b, c ∈ K such as in Proposition 8 there exists u ∈ OK and v ∈ OK× such that

Ñ

([
u+ v · b
v · c

])
< 1, then K is Euclidean for the algebraic norm.

Proof. Take any x ∈ K. Let c ∈ K \ {0} such that Ñ(c) < d

δ22d·∆̃
2
K

(for example we can take 1/n for a large

enough n ∈ Z≥0). Then there exists u ∈ OK and v ∈ OK× such that Ñ

([
u+ v · x
v · c

])
< 1. In particular, we

have Ñ(u+ v · x) < 1 and then N(u+ v · x) < 1.

As v ∈ OK×, we have N(u+ v · x) = N(v−1 · (u+ v · x)) = N(v−1u+ x). We can then take k = −v−1u and

we have N(x− k) < 1.

The notion of Euclideanity can be encapsuled in a constant depending only on the considered field.

Def 9 ([Lez12]). Let x ∈ K, the Euclidean minimum of x, denote mK(x) is the infimum of the function

k 7→ |N(x−k)| where k runs over OK . This definition extends by continuity to any x ∈ KR and is then denoted

mKR(x).
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The Euclidean minimum of K, denoted MK is equal to the quantity supx∈K mK(x).

The Euclidean minimum of KR, denoted MKR is equal to the quantity supx∈KR
mKR(x).

If r1 + r2 > 1, the two Euclidean minimum MK and MKR in fact coincide [Lez12, Th 2.7].

From now on in this section, we assume that the field K is Euclidean for the algebraic norm, with

Euclidean minimum MK < 1. In order to place ourselves in interesting cases, we will assume that the rank

of the units of OK is greater than 1 (i.e., that r1 + r2 ≥ 2). We will also assume that we have access to an

oracle ED (for Euclidean Division) that on input x ∈ K returns such a k ∈ OK . This oracle extends to KR by

density and discreteness of OK(the fact that MK < 1 enable us to consider that for any x ∈ KR, ED(x) < 1).

One thing we would want from ED is for it to preserve the balanceness of the elements of K. Namely, if

x is balanced (of small lp norm relatively to its normalized algebraic norm), then we would like ED(x) to be

balanced. This is not possible to ask for, as summarised in the Proposition 12.

Proposition 12. If the field K is such that r1+r2 > 1, for any 1 > ε > 0, there exists x ∈ KR with Ñ(x) <
√

2ε

and ‖x‖∞ < 2ε, such that a valid output for ED(x) is k of algebraic norm 1 and of l∞ norm > 1/ε.

Proof. Without loss of generality, we restrict ourselve to the case r1 + r2 = 2.

First, take a u ∈ OK×, then u =

[
M

1/M

]
. As in Proposition 3, we can take M > 1/ε. Then let x =

[
1/M

2/M

]
∈

KR. Then u is a legitimate output of ED(x) as |N(x− u)| = (M − 1/M) · (1/M) = 1− 1/M2 < 1.

Then the four following facts hold:

• Ñ(x) <
√

2ε.

• ‖x‖∞ < 2ε.

• N(u) = 1.

• ‖u‖∞ > 1/ε.

This complete the proof.

In order to have more clarity, the Landau notation will be used in the following. The previous proposition

can be rephrased as follows:

Proposition 13. If the field K is such that r1 + r2 > 1, for any 1 > ε > 0, there exists x ∈ KR with

Ñ(x) = O(ε), ‖x‖∞ = O(ε) such that a valid output for ED(x) is k of algebraic norm 1 and of l∞ norm Ω(1/ε).

Proposition 13 explains that the quotient by the Euclidean division of a balanced element of KR can be

unbalanced. The same proof can be adapted to prove the same fact for the remainder.

Proposition 14. If r1 + r2 > 1, for any 1 > ε > 0, there exists x ∈ KR with Ñ(x) = O(ε) and ‖x‖∞ = O(ε),

such that a valid output for ED(x) is k of algebraic norm 1 and such that ‖x− k‖∞ = Ω(1/ε).

We are now going to try to anyway use the ED oracle to have a Lagrange-Gauss’ algorithm for rank-2

OK-modules.

The setup is the same as before, we are considering the matrix:[
1 b

0 c

]
,

and we want to find u, v ∈ OK such that Ñ

([
u+ v · b
v · c

])
< 1.

The most natural way to do so, as we know that K is Euclidean for the algebraic norm, is to take v = 1

and u = ED(b). This leads to Algorithm 4.1. However, this algorithm does not output a vector with smaller

algebraic norm in all cases.

Proposition 15. If r1 + r2 > 1, for all 1 > ε > 0 there exists b, c ∈ KR with Ñ(b) = O(ε), Ñ(c) = O(1),

‖b‖∞ = O(ε) and ‖c‖∞ = O(1) such that a possible output of Algorithm 4.1 on (b, c) is X with N(X) = Ω(1/ε).

8



Algorithm 4.1 Reduction by ED of b by 1

1: procedure Euclidean division(b, c ∈ KR)

2: Let u be the output of ED(b)

3: return

[
b− k
c

]

Proof. Let ε > 0. By Proposition 14, we can find a pair b, k with Ñ(b) = O(ε), ‖b‖∞ = O(ε) such that k is

a possible output for ED(b) and b − k =

[
ε

Ω(1/ε)

]
. We take c =

[
1

1

]
an element of KR of very small lp and

algebraic norm.

So N

([
b− k
c

])2

= (ε2 + 1)(Ω(1/ε2) + 1) = Ω(1/ε2).

On input b, c, Algorithm 4.1 will output a vector of large algebraic norm.

These propositions should not be seen as a simple existence statements but more as a descriptions of the

pathological cases that can occur and make Algorithm 4.1 unusable in practice. Namely, if k − b is very

unbalanced the algorithm does not work. This leads us to an updated version of Algorithm 4.1, namely

Algorithm 4.2, where the number b− k is balanced by multiplying it by an element of OK×.

Algorithm 4.2 Reduction by ED of b by 1 with balancing

1: procedure Balanced Euclidean division(b, c ∈ KR, γ > 1)

2: Let k be the output of ED(b)

3: Find u ∈ OK× such that u · (b− k) is γ-balanced.

4: return

[
u · (b− k)

u · c

]
= uk ·

[
1

0

]
+ u ·

[
b

c

]

Unfortunately, Algorithm 4.2 also has pathological cases.

Proposition 16. If r1 + r2 > 1, for all 1 > ε > 0, for all γ > 1, there exists b, c ∈ KR with Ñ(b) = O(ε),

Ñ(c) = O(1), ‖b‖∞ = O(ε) such that the output of Algorithm 4.2 on (b, c, γ) is X with N(X) = Ω(1/ε).

Proof. Fix a γ > 1 and let ε > 0. By Proposition 14, we can find a pair b, k with Ñ(b) = O(ε), ‖b‖∞ = O(ε)

such that ED(b) = k and b− k =

[
ε

Ω(1/ε)

]
.

We assume that (b − k) = u−1

[
x

y

]
with u ∈ OK×, xy < 1 and such that

[
x

y

]
is balanced, namely

x, y ≤ γ · xy < γ. In particular we have x, y ≥ 1/γ.

Take 0 < a < 1. Let c = u−1

[
aε

1/ε

]
. Then N(c) = a = O(1) and

N

([
u · (b− k)

u · c

])2

= ((aε)2 +x2)(1/ε2 +y2) > x2 ·(1/ε2 +y2) > 1/γ2 ·(1/ε2 +1/γ2) = Ω(1/ε2) since γ is fixed.

On input b, c, Algorithm 4.2 will output a vector of algebraic norm Ω(1/ε).

Here again, we can see that the objection for the output to have a output with small algebraic norm is that

even if u · (b − k) is balanced then if u · c is not, the algorithm can go wrong. One may then wonder if it is

possible to find u ∈ OK which will balance both b− k and c at the same time. But again this is not possible.

Proposition 17. For all M > 0 large enough, there exists (x, y) ∈ KR
2 with algebraic norm equal to 1 such

that for any u ∈ OK× either ux or uy has l2 norm Ω(M).
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Proof. Let M > 0 and take x =

[
1

1

]
and y =

[
M2

1/M2

]
. Then x and y have algebraic norm equal to 1. The area

of the parallelogram (0, u · x, ·(x+ y), ·y) is A = ‖x‖2 · ‖y‖2 · | sin(x, y)|. The angle between x and y goes to π/4

when M grows, so for M large enough we have that A ≥ ‖x‖2 · ‖y‖2 /4 = (
√
M4 + 1/M4)(

√
2)/4 = Ω(M2).

The matrices of the multiplication by elements of OK× are unimodular, hence they preserve the areas. For

any u ∈ OK×, the area of the parallelogram (0, x, x+ y, y) is equal to ‖ux‖2 ‖uy‖2 | sin(ux, uy)| ≤ ‖ux‖2 ‖uy‖2.

We then have the inequalities:

‖ux‖2 ‖uy‖2 ≥ ‖ux‖2 ‖uy‖2 | sin(ux, uy)| = A ≥ Ω(M2)

Then either ‖ux‖2 or ‖uy‖2 is greater than Ω(M).

5 Minimum-based Euclidean division

In this work, the definition of ED(x) gives us any number at a distance at most 1 of x, which is a not the

strongest condition possible. One could think that a more powerful oracle could lead to better results.

Proposition 18. For any x ∈ K, the minimum of the function k 7→ |N(x− k)| is reached.

Proof. Let x = p/q be an element of K with p ∈ OK and q ∈ OK \ {0}. The set {N(x− k), k ∈ OK} is

contained inside the discrete set {N(k/q), k ∈ OK} ⊂ 1
N(q)Z. Then by positiveness and by discreteness of

{N(x− k), k ∈ OK}, the minimum of the fuction k 7→ |N(x− k)| is reached.

Let us then define an oracle giving one of the best possible k.

Def 10. Let ED’ be an oracle that, on input x, return some k ∈ OK such that |N(x−k)| is minimal. If multiple

choices are possible, then the oracle arbitrarily chooses one of them.

With this definition in particular, the proof of Proposition 12 does not hold anymore since the condition

|N(x− k)| < 1 is not sufficient. However, this new Euclidean division oracle does not suffice to hope for a good

divide and swap algorithm.

5.1 Properties of the min-Euclidean division

First, let’s introduce some notation. We define the algebraic norm integer-circle centered on x ∈ KR of radius

r > 0 to be the set of integers at fixed ”algebraic distance” r of x: CNOK
(x, r) = {y ∈ OK , |N(x− y)| = r}. Let

us first state some properties of those sets.

Proposition 19. For any x ∈ KR and any r > 0, the following holds:

∀k ∈ OK , CNOK
(x+ k, r) = CNOK

(x, r) + k (1)

∀u ∈ OK×, CNOK
(ux, r) = u−1 · CNOK

(x, r) (2)

Proof. Let x ∈ KR and r > 0.

For Eq 1, take k ∈ OK .

CNOK
(x, r) + k = {k + k′, k′ ∈ OK , |N(x− k′)| = r}

= {k + k′, k′ ∈ OK , |N(x+ k − (k + k′))| = r}
= {k′ ∈ OK , |N(x+ k − k′)| = r}
= CNOK

(x+ k, r)

10



For Eq 2, take u ∈ OK×.

u−1 · CNOK
(x, r) =

{
u−1 · k, k ∈ OK , |N(x− k)| = r

}
=
{
u−1 · k, k ∈ OK , |N(u · x− u · k)| = r

}
=
{
u−1 · u · k, k ∈ OK , |N(u · x− k)| = r

}
= {k ∈ OK , |N(u · x− k)| = r} = CNOK

(ux, r)

It is important to notice that CNOK
(x, r) does not behave like a circle in the traditional sense. In particular,

if r1 + r2 > 1 they can be unbounded: for example CNOK
(0, 1) = OK×. We are able to state a more general

proposition:

Proposition 20. If r1 + r2 > 1, then for any x ∈ K the set CNOK
(x, r) is either empty or infinite.

Proof. Let x = p/q ∈ K with (p, q) ∈ OK × OK \ {0} and r > 0 such that CNOK
(x, r) is not empty. Let

k ∈ CNOK
(x, r), by Prop 19, up to taking x′ = x− k, we can assume 0 ∈ CNOK

(x, r). Let us rewrite CNOK
(x, r).

CNOK
(x, r) = {k ∈ OK , |N(x− k)| = |N(x)|} = {k ∈ OK , |N(1− k/x)| = 1} .

The set CNOK
(x, r) can therefore be put in bijection with the set 1 + 1

xOK
⋂ CNK (0, 1).

A subset of this set is 1 + 1
xOK

⋂ CNOK
(0, 1) = 1 + q

pOK
⋂OK× which contains 1 + qOK

⋂OK×.

We are going to show that for any q ∈ OK \ {0}, the set (1 + qOK)
⋂OK× is infinite.

Let u ∈ OK× be a unit which is not a root of unity (it exists since r1 + r2 > 1). The set
{
uk, k ∈ Z

}
is therefore infinite. The set OK/qOK is finite, so there exists k1 < k2 such that uk1 = uk2 mod q i.e.,

uk2−k1 = 1 mod q i.e., uk2−k1 ∈ 1 + qOK . Therefore, we have found v = uk2−k1 ∈ OK×
⋂

1 + qOK hence

vk ∈ OK×
⋂

(1 + qOK) for all k ∈ Z, therefore OK×
⋂

(1 + qOK) is infinite since v is not a root of unity.

Then (1 + 1
xOK)

⋂OK× is infinite, hence 1 + 1
xOK

⋂ CNK (0, 1) is infinite, and finaly CNOK
(x, r) is infinite,

which concludes the proof.

Note that the proof of Prop 20 gives a way to build an infinite number of elements of CNOK
(x, r) in poly-

nomial time in NK/Q(x). The action of ED’(x) can therefore be seen as taking an arbitrary element in the

set CNOK
(x,mK(x)) where mK(x) = mink∈OK

|N(x− k)| is the Euclidean minimum of x, as defined in [Lez12].

Note that this proposition does not apply to elements of KR, therefore in order to find elements with unique

Euclidean norm we must restrict ourselve to elements of KR \K.

5.2 Arbitrarily bad Euclidean divisions for ED’

In this section we do not need to assume K Euclidean anymore since we use ED’ which uses “argmin” instead of

the condition “< 1”. We are going to postulate the existence of an element y ∈ KR such that CNOK
(y,mK(y)) =

{0}. This statement is discussed in Section 5.3.

Theorem 21. Let ε > 0, then there exists an xε ∈ KR with N(x) = Oε(1), ‖xε‖ = Oε(1) and such that the

unique valid output k of ED’(xε) verifies ‖xε − k‖ = Ωε(1/ε).

First, we are going to find an element of K which is arbitrarily large and with unique output for ED’ equal

to 0.

Lemma 22. For all ε > 0, there exists yε ∈ KR with 0 as unique possible output for ED’(yε), N(yε) = Oε(1)

and such that ‖yε‖ = Ωε(1/ε).
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Proof. Take y the element ofKR such that CNOK
(y,mK(y)) = {0}. Its norm does not depend on ε and k = ED’(y).

By the infinity of OK×, there exists uε ∈ OK× such that ‖uε(y − k)‖ > 1/ε.

Since y has unique Euclidean divisor 0, it is the same for uε · y by Proposition 19. We then define yε =

uε · y.

Now with this “arbitrarily bad” element, we can prove the theorem.

Proof of Theorem 21. Let ε > 0. For any k ∈ OK we have that k is the unique valid output for ED’(k − yε).
Now let kε be the closest integer to yε in l∞ norm. Since OK is a lattice, we have that ‖kε − yε‖ = Oε(1) and

hence N(kε − yε) = Oε(1).

Furthermore, we have that kε is the unique valid output for ED’(kε − yε). Then by taking x = kε − yε, we

have x of bounded algebraic and lp norms whose output x−ED′(x) = yε can be of arbitrary large lp norm.

We can note that the results we have here are not as strong as the ones in Section 4 since x cannot be as

small as we want, but they applies in all fields, and not only in the Euclidean ones.

5.3 Constructing element with unique Euclidean divisor

During our study of ED’, the question of finding elements of KR such that the output of ED′ is unique occurred.

It turns out that constructing an element with unique Euclidean divisor is not trivial, since Proposition 20 gives

that any element ofK has an infinite number of ”minimal Euclidean Divisors”. One could then restrict themselve

to transcendental numbers.

Proposition 23. If x ∈ C (seen as an element of KRvia the embedding x 7→ (x, . . . , x)) is transcendental, then

for any r > 0, the set CNOK
(x, r) has cardinal 0 or 1.

Proof. Let x ∈ C transcendental and r > 0 such that CNOK
(x, r) 6= ∅. As for any k ∈ OK , CNOK

(x + k, r) =

CNOK
(x, r) + k and for any k ∈ OK , k + x is transcendental, we can assume 0 ∈ CNOK

(x, r), hence r = |N(x)|.
Then let k ∈ OK such that r = |N(x)| = ±N(x−k). Let P (Y ) = (N(Y )−N(Y −k))(N(Y )+N(Y −k)), then

it is a polynomial with coefficients in Z of degree d, and P (x) = 0. Hence, as x is transcendental P = 0, so either

N(X) = N(X−k) or N(X) = −N(X−k). The sign of the bigger coefficient implies that N(X) 6= −N(X−k),

so N(X) = N(X − k). Hence the roots of N(X) and N(X − k) coincide, and the roots of the polynomial

N(X − a) are exactly the embeddings of a in C. As the embeddings of 0 are all equal to 0, k = 0, hence

|CNOK
(x, r)| = 1

In order to construct a number with unique Euclidean division, one must then find x ∈ C transcendental

such that its Euclidean minimum is reached. In order to do so, a first approach would be to take elements very

close to 0 in lp norm and to try to prove that the ”closest” integer in algebraic norm to those elements is 0.

This approach do not succeed easily, as summarised in the next proposition.

Proposition 24. If r1 + r2 > 1, for every ε > 0 there exist an element x ∈ K with ‖x‖2 < ε such that

N(x) > mK(x).

Proof. We are doing the proof with r1 + r2 = 2, but it generalize for greater rank of OK×.

Let ε > 0. Let ε1, ε2 > 0 to be determined later. Let u ∈ OK× =

[
ε1

1/ε1

]
. We are going to look at the open

inside of CNOK
(u, ε2), which we call DN (u, ε2) = {x ∈ KR, |N(u− x)| < ε2}. The intersection of this set with the

x axis is equal to the open segment (ε1(1− ε2), ε1(1 + ε2)).

On can choose ε1 such that for any ε2 sufficiently small, the segment (ε1(1 − ε2), ε1(1 + ε2)) lies into the

open ball of radius ε, which we are going to call Bl2(0, ε). Once ε1 is fixed, we are goig to fix ε2 in order

to place ourselve in a situation looking like Fig 1. Namely we want that there exist points inside the set

Xε1,ε2 =
(
Bl2(0, ε)

⋂DN (u, ε2)
)
\ DN (0, ε2).
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|N(x)| < ε2

|N(u− x)| < ε2

�x�2 < ε

Figure 1: DN (u, ε2), DN (0, ε2) and Bl2(0, 2ε2).

Since when ε2 goes to 0 (with ε, ε1 fixed), the set DN (u, ε2)
⋂DN (0, ε2) converges to the set {(ε1, 0)} and

hence Xε1,0 is not empty, for ε2 small enough, Xε1,ε2 is an open non-empty set.

As Xε1,ε2 is open and non-empty, by density of K in KR it contains an element of K, let us call it x. This

element verifies ‖x‖2 < ε and |N(x− u)| < ε2, in particular mK(x) < ε2. But as x /∈ DN (0, ε2), it also verifies

|N(x)| > ε2 > mK(x), which concludes the proof.

Corollary 25. There exist a sequence xn of elements of K converging to 0 such that for all n,N(xn) > mK(xn).

In particular, Proposition 24 show that the strategy of taking small elements KRin order to find an element

with unique Euclidean divisor equal to zero do not work.

6 Module LLL in biquadratic Euclidean fields

A attempt to use the Lagrange algorithm in module lattices was made in [KL17]. They succeeded for certain

fields and for a certain norm to have a LLL-type algorithm. This seems to contradict our study but in the next

section we will explain the differences between their algorithm and the one we are trying to create.

In [KL17], a LLL-type algorithm is described for biquadratic Euclidean number fields, namely fields of the

form K = Q(
√−α,√β) with α > 0 and β such that K is Euclidean with respect to the algebraic norm (which

works for some small values of α and β, see [KL17]).

6.1 Other notions of LLL reduction

Let K = Q(
√−α,√β) with α and β such that K is Euclidean as before, and define the complex subfield

K0 = Q(
√−α). The extension K/K0 is of degree two and of galois group Gal(K/K0) = {id, θ} where θ is the

13



conjugation
√
β 7→ −√β. Then the following is a bilinear form over Kn:

∀x, y ∈ Kn : B(x, y) =

n∑
i=1

xiθ(yi)

Now, it is important to notice that for all x ∈ K, B(x, x) ∈ K0, so B induces a quadratic form qB : Kn → K0.

This quadratic form is degenerate as we will see in Section 6.2.

Then the norm of any element of Kn is defined as ‖B(x, x)‖, where for any element x = a + b
√−α ∈ K0,

‖x‖2 = NK0/Q(x) = a2 + α · b2.

In [KL17], a whole LLL algorithm is presented for any OK-module of dimension n but in this work we are

only going to focus on n = 2.

6.2 Degeneracy of B(·, ·)
Kim and Lee already noted that the quadratic form x 7→ B(x, x) was degenerate but did not provide specific

examples of isotropic vectors. We provide here a way to construct arbitrary large (in norm and in bit-size)

vectors that are annihilated by x 7→ B(x, x).

We can take an unit u as large as we want in norm or bit-size such that NK/K0
(u) = −1. Then the vector[

u

1

]
is isotropic and has arbitrarily large norm.

Example 26. For β = 2 and any α, the algebraic integer (1 +
√

2)n is an unit of algebraic norm (−1)n with

lp norm growing exponentially with n.

This degeneracy of the function B implies that the vector size in KR and the notion of size needed by the

LLL-type algorithm of [KL17] totally differ from the one we are considering in this paper and which is also

considered in [LPMSW19].

6.3 The difference with Module-LLL

As the notion of size differs, the notion of LLL-reducedness differs too.

Proposition 27. There exists x ∈ K2 such that ‖B(x, x)‖ = 4 and the l2 norm of x is arbitrarily large.

Proof. As K has infinite unit group, there exist u arbitrarily large, and then the vector x =

[
u

1

]
has a l2 norm

arbitrarily large. Since u is invertible in OK , the algebraic norm relatively to K0 of u is an element of O×K0
.

This unit group is finite and hence contains only roots of unity. The degree of K0/Q beging 2, up to taking u2

instead of u, we can assume that NK/K0
(u) = 1. Therefore B(x, x) = 1 + 1 = 2, hence ‖B(x, x)‖ = 4.

One could note that this result implies that the bit size of the small elements of K and the norm of B(·, ·)
are non-corelated. An example

The Lovasz condition between [KL17] and [LPMSW19] hence differs. Take b1 =

[
b11

b12

]
and b2 =

[
b21

b22

]
two

vectors of OK2. Let us give an explicit writing the LLL-reduceness condition for the two papers for the case

n = 2.

LLL condition in [KL17]:

Lovasz condition: ‖B(b2, b2)‖2 ≥ A · ‖B(b1, b1)‖2

⇔‖b21θ(b21) + b22θ(b22)‖2 ≥ A · ‖b11θ(b11) + b12θ(b12)‖2

⇔
∥∥NK/K0

(b21) +NK/K0
(b22)

∥∥2 ≥ A ·
∥∥NK/K0

(b11) +NK/K0
(b12)

∥∥2

Size reduceness condition: NK/Q

(
B(b2, b1)

B(b1, b1)

)
≤M(K).
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Where M(K) is the Euclidean minimum of K (this is a positive real which is less than 1, see [KL17] for a precise

definition).

Lovatz condition in [LPMSW19]:

|NK/Q(b2)|2 ≥ A · |NK/Q(b1)|2

⇔ |NK/Q(|b21|2 + |b22|2)| ≥ A · |NK/Q(|b11|2 + |b12|2)|.

With this explicit description, we can then construct a basis which is size-reduced and Lovasz-reduced for

the LLL-type algorithm of [KL17] but not for the one of [LPMSW19].

Let l ≥ 1 such that 1/(l + 1)2 < M(K) and a unit u of arbitrarily large lp-norm. Then take b1 =

[
u

n

]

and b2 =

[
1

0

]
. Then N(b1) can be arbitrarily larger than N(b2) so [b1, b2] does not fit the Lovatz condition

in [LPMSW19].

On the other hand, B(b1, b1) = l+1 and B(b2, b1) = θ(u), hence NK/Q

(
B(b2,b1)
B(b1,b1)

)
= 1/(l+1)2 <M(K) (Size

reduceness condition) and B(b2, b2) = 1 so for A > n+ 1, the Lovasz condition of [KL17] is satified. Therefore

the basis [b1, b2] is reduced in the sense of [KL17].
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application to ideal-svp. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in

Cryptology – EUROCRYPT 2017, Lecture Notes in Computer Science, page 324–348. Springer

International Publishing, 2017. 1

[Coh96] Henri Cohen. A course in computational algebraic number theory. Graduate texts in mathematics.

Springer, 3rd, corr. print edition, 1996. 2, 3

[Coh00] Henri Cohen. Advanced Topics in Computional Number Theory, volume 193 of Graduate Texts in

Mathematics. Springer New York, 2000. 5

[CS88] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups, volume 290 of

Grundlehren der mathematischen Wissenschaften. Springer New York, 1988. 3

[CSD17] Information Technology Laboratory Computer Security Division. Post-quantum cryptography —

csrc — csrc, Jan 2017. 1

[CSD20] Information Technology Laboratory Computer Security Division. Round 3 submissions - post-

quantum cryptography — csrc — csrc, 2020. 1

[FP96] C. Fieker and M. E. Pohst. On lattices over number fields, volume 1122 of Lecture Notes in

Computer Science, page 133–139. Springer Berlin Heidelberg, 1996. 1

15



[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press, 2012.

1

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st annual

ACM symposium on Symposium on theory of computing - STOC ’09, page 169, Bethesda, MD,

USA, 2009. ACM Press. 1

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for cir-

cuits. Journal of the ACM, 62(6):45:1–45:33, Dec 2015. 1

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryptosys-

tem. In Joe P. Buhler, editor, Algorithmic Number Theory, Lecture Notes in Computer Science,

page 267–288. Springer, 1998. 1

[KL17] Taechan Kim and Changmin Lee. Lattice reductions over euclidean rings with applications to
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