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Abstract. Given a Gaussian matrixX, a Gaussian Leftover Hash Lemma
(LHL) states that X · v for a Gaussian v is an essentially independent
Gaussian sample. It has seen numerous applications in cryptography
for hiding sensitive distributions of v. We generalise the Gaussian LHL
initially stated over Z by Agrawal, Gentry, Halevi, and Sahai (2013) to
modules over number fields. Our results have a sub-linear dependency on
the degree of the number field and require only polynomial norm growth:
∥v∥/∥X∥. To this end, we also prove when X is surjective (assuming the
Generalised Riemann Hypothesis) and give bounds on the smoothing
parameter of the kernel of X. We also establish when the resulting distri-
bution is independent of the geometry of X and establish the hardness
of the k-SIS and k-LWE problems over modules (k-M-SIS/k-M-LWE)
based on the hardness of SIS and LWE over modules (M-SIS/M-LWE)
respectively, which was assumed without proof in prior works.

1 Introduction

The classic Leftover Hash Lemma (LHL) is an argument about randomness
extraction. It states that if H is a distribution over a set of universal hash
functions and X is a random variable with some guaranteed entropy then the
distributions (H, U) and (H ← H, H(X)) are statistically close (where U is the
uniform distribution). In lattice-based cryptography usage of the LHL appears
in a context when the image Zr (or Or

K) of H(·) is taken modulo some q, for
example in LWE or SIS based cryptography. In that case, the domain Or

K/q
being finite allows to use variants of the classical LHL, with some modifications
based on e.g. on how q splits in OK. An overview of the LHL in the context
of structured lattice based cryptography was given in [BL25]. A limitation of
the classical LHL and its variants mentioned above is that it only applies when
the image of H(·) is finite. Critically, those statements do not cover the case
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when H(X) is close to a discrete Gaussian distribution over a lattice – an infinite
domain.

In [AGHS13], Agrawal, Gentry, Halevi, and Sahai prove an LHL-type state-
ment that holds over lattices rather than in finite groups. For X ∈ Zr×m with
columns sampled independently from DZr,ς – a discrete Gaussian over Zr – and v
sampled from DZm,ς′ , they upper bound the statistical distance between (X,X ·v)
and (X,DZr,ς′·

√
XXT) for any m ≥ r ln(rς) (constant factors are omitted for this

introduction). In follow-up works, Aggrawal and Regev [AR16] improve this
result with an alternative proof. In 2020, Kirshanova, Nguyen, Stehlé and Wal-
let [KNSW20] further improve the result with a better lower bound m ≥ r log(ς).
Hereafter, we refer to statements of this type as Gaussian LHLs.

As stated the output distribution of X · v depends on the matrix X and
might be far from a spherical Gaussian. In order to have a spherical output,
the solution is usually to sample X and then to sample v from the Gaussian
distribution with parameter ς ′ · X̃ where X̃ is a pseudo-inverse of X. However,
in some applications this choice of the distribution of v is not available. The
‘sphericity’ of the distribution DOr

K,
√
XXT is controlled by the singular values of

X. In [AGHS13, Lemma 8], the authors argue that with high probability for a
wide enough Gaussian matrix X ∈ Zr×m of parameter ς, its singular values are
within a constant factor of

√
mς. Together, this establishes when X · v follows

a distribution close to independent from both of its inputs, enabling various
applications discussed below.

A limitation of existing Gaussian LHLs is that they do not take advantage of
the algebraic structure of the lattice, while most practical primitives based on
lattices currently use module lattices: ifM is a rank-r module over the ring of
integers OK of a degree-d number field K, it is a rank-d ·r lattice when considered
through, e.g. the canonical embedding of K. In [KNSW20], the authors give a
bound of m ≥ dr ln(dr) independent vectors required for the Gaussian LHL result
to work over Or

K. However, a better bound for the number of independent vectors
is to be expected, since any single vector v ∈ Or

K gives d− 1 other vectors (over
Z) ‘for free’ (think Xi · v in the cyclotomic case). We would then expect a lower
bound on m that grows linearly in r (the rank of the module) and sublinear in d
(the degree of the number field).

Contributions. In this work, we use the structure of OK to prove that only
m ≥ r·(log(drς))1+o(1) vectors are necessary to get a Gaussian LHL in the context
of module lattices. In §5, we prove that if m ≥ r · (log(drς))1+o(1), X ∈ Or×m

K is a

Gaussian matrix and v ∈ Om
K is a Gaussian vector with parameter

√
Σ then the

distributions (X,X ·v) and (X,DOr
K,
√
X·Σ·XT) have negligible statistical distance.

In particular, in §3 we establish when X generates Or
K and in §4 we upper bound

ηε(Λ
⊥(X)). The composition of these two results establishes the claim, but these

results may be of independent interest.
Moreover, in §6 we establish a bound when we may expect X · v to be close

to spherical for any ring of integers of a number field: if X ∈ Or×m
K is a Gaussian

matrix with m ≥ (rd)3 with parameter ς, then the Rényi divergence between the
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distribution DOr
K,
√
XXT and a spherical Gaussian of parameter ≈ ς

√
m is O(1).

This result permits comparing the distributions (X,X · v) and (X,v′), where v′

is sampled from a spherical Gaussian depending only on r,m and ς.
Finally, as a first explicit application, in §7 we give a reduction from M-SIS

to k-M-SIS that supports a linear number of hints and discuss how a similar
reduction from M-LWE to k-M-LWE can be obtained.

1.1 Technical overview

Let X = [x1, . . . ,xm] ∈ Zr×m be a matrix whose entries are sampled i.i.d. from
a Gaussian distribution over Z. As mentioned before, the Gaussian LHL for
Z-lattices [AGHS13,AR16,KNSW20] states that the distribution X · v when v
is a Gaussian vector in Zm is close to a Gaussian distribution, even given X. A
central step in the proof of this result is to give an upper bound for the smoothing
parameter of the kernel lattice Λ⊥(X) = {x ∈ Zm, X · v = 0} of the matrix
X. Two different techniques were introduced to do it. In [AGHS13,KNSW20],
the lattice Λq(X) ⊂ Zm, generated by the rows of X and scaled standard unit
vectors q · ei is considered for some well-chosen prime q. It is then proven
that with overwhelming probability, all short vectors of Λq(X) are of the form
XT · v, and then the lattice minima of Λq(X) are linked to the last minimum of
Λ⊥(X), by transference theorems in [AGHS13], and by a more involved argument
in [KNSW20]. The method used in [KNSW20] gives the best known parameters
for Gaussian LHL over Z in terms of number of vectors and of ς ′. However, we
did not manage to leverage the algebraic structure of OK to improve it.

In [AR16], another approach was used. We describe it here in more detail,
since we use it as our starting point. The authors first prove the existence of a
short preimage U ∈ Zm×r of Ir in X · Zm. This matrix is then used to build a
short basis of Λ⊥(X), using the fact that if X ·U = Ir then all the columns of
U ·X− Im are in the kernel of X. The existence of U is proven as follows. Let S
be the set of formal 0, 1 combinations of columns of X: S = {

∑m
i=1{0, 1} · xi}.

The formal set S has size 2m by construction, and the vectors inside it take values
in the ball of radius m

√
r · ς with overwhelming probability. By the pigeonhole

principle, this set must contain a collision when m ≥ r log(nmς) (again, constant
factors are omitted for this introduction). The collision implies that some xj must
be a 0,±1 combination of columns of X, and the authors then argue that this
implies with very high probability that the set S ∩ (S + e1) is non-empty, leading
to a preimage of e1 that has coefficients in {0,±1,±2}. The same argument
is then repeated with ej for 2 ≤ j ≤ n, leading to the existence of U with
coefficients in {0,±1,±2}.

We generalise this proof strategy. Assume that X = [x1, . . . ,xm] is a matrix in
Or×m
K whose coefficients are sampled i.i.d. from a discrete Gaussian distribution

over OK. We aim to prove that for a Gaussian vector v ∈ Om
K , the output distri-

bution X · v is close to the Gaussian distribution of variance parameter
√
X ·XT.

Our proof, following the same blueprint as [AR16], requires two intermediary
steps.
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1. Proving that the matrix X is surjective in Or
K with high probability.

2. Proving an upper bound on the smoothing parameter of the kernel lattice
Λ⊥(X) that holds with high probability.

Surjective Gaussian matrices. To our knowledge, a general result about
the surjectivity of discrete Gaussian matrices over OK has not been established
in prior work. Our strategy relies on methods developed within the theory of
random integral matrices. In §3, we generalise the proof of [NP20], which focuses
on matrices over Z and only gives an asymptotic estimate for the probability. The
surjectivity proof over Z consists of looking at the random matrix modulo every
prime number p and showing that with high probability X is non-singular modulo
p. If X is non-singular modulo every prime p, it implies that the determinant
of the lattice spanned by X is not divisible by any primes, and hence that X is
surjective. In the number field case, we have to consider prime ideals instead of
prime numbers: when a matrix X ∈ Or×m

K is surjective, in particular its reduction
modulo any prime ideal p of OK is surjective. We prove that the converse also
holds: X is surjective over Or

K if and only if its reduction modulo any ideal p

is surjective in OK/p. We then prove that a random X̃ is surjective with high
probability if its coefficients are independent and sampled from a distribution
with enough min-entropy. Finally, using a lemma from [JLWG25], we prove that
this min-entropy condition holds for Gaussian matrices modulo ideals. Then since
OK has an infinite number of prime ideals, we give an upper bound (depending
on the Extended Riemann Hypothesis) on the number of prime ideals that need
to be considered to prove X’s surjectivity. We do so by considering the first r× r
submatrix of X, proving that it has a non-zero determinant with high probability,
and then that only the primes dividing this determinant need to be considered.

The probability of X to be surjective highly depends on the number field
considered (which was not an issue in the rational integer setting since the field
is fixed to Q). We prove that the probability of X ∈ OK/pr×m to be surjective in
(OK/p)r is ≥ 1−r ·N (p)m−r+1 (Lemma 3.1). In particular, if OK has many ideals
of small norm5, then X has to ‘be surjective in many different finite fields at the
same time’ in order to be surjective over Or

K. The formula we obtain depends on
the so-called Prime Zeta function of the number field PK(s) =

∑
p⊂OK

N (p)−s

which ‘counts’ the small ideals of OK. We also give a script estimating the growth
of this function for cyclotomic fields in Appendix C.2. We present the overall
result, both in the general form and in the case of prime-power cyclotomics in
§3.5. Informally it states:

Theorem 1.1 (Assuming extended Riemann hypothesis, Informal). If
K is a number field of degree d and NK is the norm of its smallest ideal then for
any r ≥ 1, ε > 0, ς large enough and m ≥ 2r + log(1/ε)/ log(NK), it holds that

Pr
X←Dr×m

OK,ς

(
X is surjective

)
≳ 1− ε.

5 For example, one can construct a degree d multiquadratic number field that has d
different prime ideals of norm 2.
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Short basis of Λ⊥(X) and smoothing parameter. The second step follows
and generalises the proof of [AR16]. In that work, the authors first prove existence
of a short block-diagonal preimage of Ir, and then use it to build a short
basis of Λ⊥(X). To prove that a short preimage exists they define a formal set
S = {

∑m
i=1{0, 1} · xi} (where the xi are the columns of X). This set has size 2m,

which must contain a collision when m ≥ r log(rς) by the pigeonhole principle.
This collision is then used to build an element in the intersection S ∩ (S + ei)
which implies a short preimage of ei for 1 ≤ i ≤ r.

In order to take advantage of the structure of OK, we now consider the set
S = {

∑m
i=1 ai · xi}, where the ai are small elements of a subset A ⊂ OK (taking

A = {0, 1} recovers the proof of [AR16]). If the set A is chosen6 to have size
2d then the set S has size 2dr, and by running a similar pigeonhole principle
argument we obtain a collision for m ≥ r log(drς) (instead of m ≥ dr log(drς)
when taking binary combinations).

However, changing the set A also changes the result. Instead of a preimage for
ei we only obtain a preimage for a·ei for a ∈ {a1 · a2, ai ∈ A} (Lemma 4.2). Then,
if this element a ∈ OK is not invertible, this does not result in an integral preimage
of ei we were looking for. In order to solve this problem, a solution could be to
pick A ⊂ O×K such that all elements of A and their inverses have small ℓ2 norm.
We did not pursue this approach since the best existing subset of O×K of size 2d

in the literature (to our knowledge) contains elements of norm 2O(
√
d) [CDPR16,

Section 6.2]. The next option is to run the argument again to get a preimage for
a′ · ei, with a new a′. Then prove that with high probability a′ is coprime with a
and run an effective version of Bezout’s identity (Lemma 2.3) to get a preimage
of (au+ a′v) · ei = ei. However, the worst-case nature of the pigeonhole principle
argument forbids us to make this argument probabilistic. Thus, instead, we have
chosen to construct the set A′ = {a′ ∈ OK, a′ coprime with a, ∥a′∥ ≤ R} for
some R, and to run the argument with this A′. Running the counting argument
demands A′ to be of exponential size. We prove in Lemma 4.3 that it is the case

for large enough R = poly
(
d,∆

1/d
K

)
. We think that this coprime-counting lemma

might have applications outside the scope of this work.

As an additional contribution, we improve the proof by considering the
intersections S+ ζjf ·ei∩S+ ζkf ·ei when K is (or contains) the cyclotomic field of
conductor f , allowing to reduce the lower bound of m by a factor of log(f). This

yields a matrix U ∈ Om×r
K whose norm is bounded by a polynomial in d,∆

1/d
K

and m such that X ·U = f · Ir. As in [AR16], we then argue that f · Im−U ·X is
a “short” independent set of vectors of Λ⊥(X), which leads to a ‘short’ basis and
a polynomial upper bound on the smoothing parameter of Λ⊥(X). This result is
presented in Theorem 4.1, and can be summarised as follows:

Theorem 1.2 (Informal). If K is a number field of degree d such that Q(ζf ) ⊆
K then for any r ≥ 1, ε > 0, ς large enough and m ≥ r · (log(drς))1+o(1) +

6 The reader used to cyclotomic fields can think about A =
{∑d

i=1{0, 1} · ζ
i
}
.
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log(1/ε)/ log(f), there exists an absolute polynomial P such that

Pr
X←Dr×m

OK,ς

(
ηε
(
Λ⊥(X)

)
≤ P (d,∆

1/d
K ,m)

)
≥ 1− ε.

We stress that the polynomial in the above theorem has a large degree in
d and in δK (the size of an OK basis as a Z-module), leading to a large upper
bound on the smoothing parameter of Λ⊥(X). We believe this massive size is a
proof artefact coming from the worst-case nature of our existence argument and
support that claim by computing small basis of random kernel lattices of various
ranks for cyclotomic fields of various conductors in Appendix A.

To summarise, in §5, we give an explicit statement of the Gaussian Leftover
Hash Lemma for structured Gaussian matrices in Theorem 5.1. Let X ∈ Or×m

K
be a Gaussian matrix and v← DOm

K ,ς .

Almost-spherical Gaussians. A limitation of the Gaussian LHL is that the
distribution of X · v, even if it is close to a Gaussian, still depends on X through
its center and its covariance matrix, which is equal to XΣXT if v is sampled
from DOm

K ,
√
Σ. In §6, we give two options for removing the dependency in the

covariance (the centre can usually be set to 0). One option is to adapt the
covariance of v and follows from previous work.

When the first option is not available, e.g. v is received from another party
or algorithm, we can still extract an almost spherical Gaussian. To overcome
this difficulty, we note that if X is of sufficient width, then it is already almost
spherical with very high probability. This fact was already mentioned in [AGHS13,
Lemma 8] for the Z setting, which we refine and generalise to the ring of integers
setting. We first prove that the geometry of a discrete Gaussian matrix X ∈ Or×m

K
is close to the one of a continuous Gaussian matrix X̃← Dr×m

ς , which can be
studied using tools from the field of random matrices. We give bounds on the
singular values of X̃ following the proof of [Sil85], in which the author was
only interested in their asymptotic behaviour. In Lemma 6.1, we prove that its
singular values can be described as sums and products of independent χ2 random
variables. We then use concentration inequalities of the χ2 distribution to show
that these singular values are all close to

√
m · ς with overwhelming probability.

Finally, we show that this closeness implies that the Rényi divergence between
the distribution of covariance XΣXT and

√
m · ς is O(1) with overwhelming

probability. This result is presented in Theorem 6.1 and can be summarised as
follows:

Theorem 1.3 (Informal). Let K be a number field of degree d, OK its ring of
integers. Let X ∈ Or×m

K sampled from Dm
Or

K,ς with m ≥ (rd)3. Then

RD(DOr
K,ς ;DOr

K,
√
X·XT) ≤ 81.

1.2 Applications

A direct application of our Gaussian Leftover Hash Lemma over modules are reduc-
tions from M-SIS and M-LWE to k-M-SIS and k-M-LWE respectively that support
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k = O(m) following the blueprint from [LPSS14].7 In this work, we only give the
reduction for M-SIS to k-M-SIS since the M-LWE to k-M-LWE reduction proceeds
analogously. This allows us to lift constructions based on k-SIS and k-LWE to the
module setting, such as linearly homomorphic signature schemes [BF11], traitor
tracing [LPSS14] and partial GPV-style trapdoors [ALLW25]. Moreover, k-SIS
may be considered as the oldest and most well-founded (due to the reduction
from SIS) member of a family of “SIS with hints” assumptions that have been
proposed recently. Indeed, works such as [ACL+22] prove the existence of hard
instances of their newly introduced assumption by proving these instances as
hard as k-M-SIS. However, in [ACL+22,ALLW25] the hardness of k-M-SIS is only
assumed and not established.

Our generalisation of the Gaussian Leftover Hash Lemma to modules also
enables the translation of various applications where [AGHS13,AR16] was used
to rerandomise ciphertexts to achieve a form of confidentiality, such as the
rerandomisation of GSW ciphertexts [BdPMW16] or the speculative suggestion
in [ACL+22] to use similar techniques to make their construction zero-knowledge.
Similarly, the special 1×2 case of a Gaussian LHL over rings had been established
and used in [LSS14] to prove that a given distribution does not leak secret values.
More generally, our result implies a generalisation of Gaussian convolution
theorems such as [GMPW20, Theorem 3] to the module setting. Such tools have
been used to give tighter reductions for SIS and LWE [MP13].

Moreover, the 1 × 2 case was generalised to more rings and used in [PS21]
to establish that NTRU instances can be rerandomised. This in turn establishes
a reduction to the decision NTRU problem. Our work is a building block to
generalise such results to larger ranks r > 1. Similarly, in [SS13] the primitivity
of the matrix of the special case 1×2 was considered to prove that NTRU signing
keys can be efficiently sampled. Our work is a building block to generalising such
reductions to a module setting.

Finally, in LWE-based encryption schemes, showing correctness often involves
upper bounding the norm of the product X · e between a short matrix X from
the decryption key and a short vector e from the encryption randomness. A naive
upper bound is ∥X∥ · ∥e∥. This can be further upper bounded by

√
r · d ·m · s2

if both X follow a discrete Gaussian distribution Dr×m
OK,s and e follows Dm

OK,s. A
better approach is to consider the product for a fixed X with X · Om

K = Or
K

and s ≥ ηϵ(Λ
⊥(X)). In this case, X · e is statistically close to a sample from

Dr
OK,s·

√
XT·X. Further upper bounding ∥X∥ and

∥∥∥DOr
K,
√
XT·X·s

∥∥∥ then yields a

tighter bound of
√
r · d ·m · s2 at the cost of additional correctness error from

the Gaussian LHL. In the literature, the second approach seems to have been
applied in the setting where OK = Z or when r = 1 but not in more general
settings, probably due to the difficulty of upper bounding ηϵ(Λ

⊥(X)), which we
take first steps to address in §4.

7 The reduction from SIS to k-SIS in [BF11] which supports k = O(1) translates
without our Gaussian LHL generalisation.
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1.3 Open question and directions

Even if our Gaussian LHL gives a polynomially bounded norm growth between
the norm of the matrix X and the norm of the vector v, the degree of the norm
growth is large (see Theorem 5.1). This blowup comes from the fact that the
upper bound on the smoothing parameter of Λ⊥(X) is very loose. We think that
this is a proof artefact, and give experiments backing this claim in Appendix A
for cyclotomic number fields.

The looseness of this bound comes from the fact that the proof of Lemma 4.4
is fundamentally “worst-case”. A first way to improve it would be to use more
probabilistic arguments instead of pigeonhole-like ones (see §4.3). Another blowup
factor in the proof of Lemma 4.4 is that when constructing a set of size 2d of
elements coprime to some a ∈ OK, Lemma 4.3 give element of size ≃ ∥a∥2. We
think that restricting Lemma 4.3 to specific number fields (e.g. prime-power
cyclotomics, where the prime ideal distribution is better known) will make our
result more usable in practice. One last way of improving the bound of Lemma 4.4
would be to find a trade-off relation between the size of the smoothing parameter
of Λ⊥(X) and the width of X. Currently, our proof shows a threshold effect: if
the width of X is less than a certain m0, then the smoothing parameter is large,
if it is above m0, we have an upper bound on it which does not depend much on
m. Finding more subtle relations between the two would allow to improve the
bound, at the cost of increasing the width of X.

2 Preliminaries

For i, j ∈ Z denote [i, j] = {i, . . . , j − 1}. We denote by Z the set of integers, Q
the rationals, R the real numbers and C the complex numbers. For any positive
function f : Rm → R and discrete set S ⊂ Rm, we write f(S) =

∑
x∈S f(x).

We use the convention that log = log2 and ln = loge. Vectors are denoted
by bold-lower-case letters, such as v. Matrices are denoted by bold-upper-case
letters, such as M. When A,B are two matrices with compatible sizes, we let
[A | B] denote the horizontally stacked block matrix and [A || B] := [AT | BT]T

the vertically stacked one. When A is a matrix in Cr×m, we denote ∥A∥ the
maximum of the ℓ2 norm of its columns. In particular, for any x ∈ Cm, it holds
that ∥A · x∥ ≤

√
m · ∥A∥ · ∥x∥.

2.1 Lattices, number theory and modules

A lattice Λ ⊂ Rm is a discrete additive subset of Rm. It is generated by a (non-
unique) basis b1, . . . ,br (often denoted in matrix form B = [b1, . . . ,br] ∈ Rm×r)
of R-linearly independent vectors. When m = r, the lattice is said to be full-rank.
The volume of a lattice Λ = L(B) is Vol(Λ) := det(BT ·B), and is independent of
the choice of basis B. Let Λ be a lattice of rank r. We denote by λi(Λ) its ith min-
ima for 1 ≤ i ≤ r: λi(Λ) = max(min{(∥v1∥, . . . , ∥vi∥),vj ∈ Λ, span((vj)j) = i}).
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For a more in-deepth introduction to number fields and number theory
in general, we refer the reader to [Coh93,Neu13]. A number field is a finite-
dimentional extension of Q, its degree being the degree of the extension. We
let OK denote its ring of integers and ∆K its discriminant. A fractional ideal
(we often omit saying “fractional” in this work) is a discrete subring of K that
is stable under multiplication by any element of OK. We say that an ideal is
integral if it is included in OK. The norm of an integral ideal a is N (a) = |OK/a|.
The norm of a fractional ideal I is N (I) = N (N · I)/N , where N is an integer
such that N · I is integral (such an integer always exists, and it can be shown
that the norm does not depend on the choice of N). In this work, we denote
integral ideals by gothic letters (a, p . . .) and general ideal by uppercase letters
(I, J, . . .). The set of ideals has a group structure, where the product of two
ideals I, J is the ideal I · J = {a · b, a ∈ I, b ∈ J}, and the inverse of an ideal I
is the ideal I−1 = {x ∈ K,x · I ⊆ OK}. Ideals have a unique prime factorisation
property. An ideal p ⊂ OK is said to be prime if OK/p is a field, and for every
ideal I ⊂ K, there exist p1, . . . , pk prime ideals and e1, . . . , ek ∈ Z such that
I =

∏k
i=1 p

ei
i . Up to reordering (pi)i and (ei)i are unique. Some of our results

rely on the Generalised Riemann Hypothesis (GRH) [BS96, Conjecture 8.7.3],
which implies in particular that for any number field K and any ε > 0, the prime
counting function πK(x) = |{p prime ideal,N (p) ≤ x}| satisfies,

πK(x) =

∫ x

2

1/ ln(t)dt+O(x1/2+ε).

A number fieldK of degree d can be embedded in C via d different maps, named
its canonical embedding. We let dR be the number of those embeddings that only
take real values, and dC be the number of pairs of complex-valued embeddings.
It holds that d = dR + 2dC. Those maps define an injective map from K to its
completion KR := K ⊗ R called the Minkowski embedding Φ : K → KR. The set
KR is isomorphic as a Hermitian space to the set

{
x ∈ Cd, xdR+i = xdR+dC+i

}
.

This set is in turn isomorphic to Rd as an inner-product space. The Minkowski
embedding allows us to endow K with a geometric structure: for any x ∈ K,
we denote by ∥x∥ (respectively ∥x∥∞) the ℓ2 (respectively ℓ∞) norm of its
Minkowski embedding (in Cd). Note that in particular, for any a, b ∈ K, it holds
that ∥a · b∥ ≤ ∥a∥∞ · ∥b∥. In this geometric setting, any ideal I of K (including
its ring of integer) is a lattice in KR of volume N (I) ·

√
∆K.

Throughout this work, we assume that we know a basis BOK ∈ Rd×d of
Φ(OK) as a Z-module. We denote by δK the maximal ℓ∞ norm of its columns
(in particular δK = 1 for cyclotomics fields with the power basis). The results of
this work are existential instead of constructive, so we use the ‘best’ basis of OK.
According to [MG02, Corollary 7.2] there always exists a basis of OK such that
1 ≤ δK ≤

√
d · λd(OK)/2.

An OK-module M ⊂ Km is a discrete subset of Km that is additive and stable
under multiplication by any element of OK (fractional ideals of OK are rank-1
modules). Any OK-module M can be represented as a (non-unique) pseudo basis
((Ii,bi))i=1,...,r, where Ii are ideals of K and bi ∈ Km are K-linearly independent.
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When r = m, we say that M is full-rank. By the Minkowski embedding, every
OK-module of rank r in Km can be seen as a lattice of rank d · r in Rd·m.

Let M ⊂ Kr be a full-rank module given by a pseudo-basis ((bi, Ii))1≤i≤r.
Its determinantal ideal is the fractional ideal det(M) := detK(B) ·

∏
i Ii, and it

is independent of the choice of the pseudo-basis. For any submodule M ′ ⊆M , it
holds that det(M ′)| det(M) with equality if and only if M = M ′.

Lemma 2.1 (Adapted from [MG02, Lemma 7.1]). Let M ⊂ Kr be a full-
rank module, and v1, . . . ,vr ∈M be a K-free set of vectors. Then there exists a
matrix B ∈ Rdr×dr that generates Φ(M) as a Z-lattice satisfying

∥B∥ ≤
√
rd · δK ·max∥vi∥.

Lemma 2.2. Let M ⊂ Kr be a full-rank module of , b1, . . . ,br ∈ M , let
B = [b1, . . . ,br] and p a prime ideal of OK with residue field F = OK/p.
Then detK(B) ∈ det(M), and furthermore it holds that detF (B mod p) =
detK(B) mod (det(M) · p).

Proof. The fact that detK(B) ∈ det(M) comes from the fact that B·Or
K ⊆M and

that detK(B) ·OK = det(B ·Or
K). This implies that det(B) mod det(M) ·p is well-

defined. Now let us define the function ϕ(b1, . . . ,br) := detK(B) mod det(M) · p.
This function is a multilinear map satisfying that for any m ∈ M and p ∈ p,
ϕ(b1 + p ·m, b2, . . . , br) = ϕ(B) + p · detK(m,b2, . . . ,br) = ϕ(B) mod pdet(M),
so it can be lifted as a multilinear map ϕ′ : (M/pM)r → F . The multilinear
map ϕ′ is alternating and clearly satisfies ϕ′(Ir) = 1, it is then equal to the
determinant over (M/pM)r. ⊓⊔

Lemma 2.3. Let a, b ∈ OK be two coprime elements. Then there exists u, v ∈ OK
with ∥u∥, ∥v∥ ≤ max(∥a∥∞, ∥b∥∞) ·

√
d · λd(OK) such that a · u+ b · v = 1.

Proof. Without loss of generality, assume that ∥a∥∞ ≤ ∥b∥∞. Let b1, . . . , bd be

a Z-basis of OK satisfying ∥bi∥ ≤ max(1,
√
i/2) · λi(OK). Let M be the rank-1

module in K2 generated by (bi · (−b, a)T )1≤i≤d. The norm of the elements of its
basis are bounded by λd(OK) · ∥a∥∞, hence the covering radius of M is at most√
d · λd(OK) · ∥a∥∞. Let u0, v0 ∈ OK such that a · u0 + b · v0 = 1 and let (u, v) be

the closest element of M to (u0, v0), then it holds that a · (u0−u)+b · (v0−v) = 1
and that ∥(u0 − u, v0 − v)∥ ≤

√
d · λd(OK) · ∥a∥∞, hence the result. ⊓⊔

When X ∈ Kr×m is a matrix, we define its kernel module Λ⊥(X) :=
{x ∈ Om

K ,X · x = 0}. When X has K-rank l, it is a OK-module of rank m− l.

2.2 Matrices and Singular Value Decomposition

Let M ∈ Rn×n be a symmetric matrix. We say that M is positive definite if for
any x ∈ Rn \ {0}, it holds that xT ·M · x > 0. For any positive definite matrix
M, there exists a symmetric matrix S such that M = STS. We call this matrix a
square root of M, it is not unique.
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Let Σ1,Σ2 be two positive definite matrices. We say that Σ1 ≤ Σ2 if Σ2−Σ1

is positive definite. Let ς > 0, we abuse the notation and write Σ ≥ ς2 for
Σ ≥ ς2Idr. For any two invertible matrices S,T, we write S ≤ T if S ·ST ≤ T ·TT.
In particular, for any invertible A ≥ B ∈ Rn×m, it holds that ∥Ax∥ ≥ ∥Bx∥ for
any x ∈ Rm.

For any matrix M ∈ Rn×m of rank r, there exist real values 0 < sr(M) ≤
. . . ≤ s1(M), and two orthogonal matrices UM ∈ Rn×n,VM ∈ Rm×m such that

M = UM ·
(
diag({si(M)}ni=1) 0

0 0

)
·VM .

The si(M) are called the singular values of M ∈ Rn×m. We denote smax(M) :=
s1(M) and smin(M) := sr(M). For any x ∈ Rm, it holds that ∥M · x∥ ≤ smax(M)·
∥x∥. If M is square and full rank, it also holds that smin(M) · ∥x∥ ≤ ∥M · x∥.

Lemma 2.4. Let X,Y ∈ Rn×m with 0 < n ≤ m. If smax(Y) ≤ δ · smin(X) for
some δ < 1 then

smax(X±Y) ∈ [1− δ, 1 + δ] · smax(X) ,

smin(X±Y) ∈ [1− δ, 1 + δ] · smin(X) .

Lemma 2.5 ([LPSS14, Adapted Lemma 16 (eprint)]). Let 1 ≤ n ≤ m be
integers and ς > 0. Let M ∈ Rn×m be a full-rank matrix. There is a polynomial-
time algorithm in the size of its input constructing a matrix S ∈ Rm×m with
s1(S) ≤ ς/sn(M) such that

ς2 · In = M · S · ST ·MT.

Proof. Assume that M = VM · diag({si(M)}ni=1) · UM is a singular value
decomposition of M with VM ∈ Rn×n, UM ∈ Rn×m orthogonal. Set S =
[UT

M |U′] · diag({si}
m
i=1) where U′ is an arbitrary extension of UT

M to an or-
thonormal basis of Rm and si = ς/si(M) for i ≤ n and si = 1 for n < i ≤ m.
Computing the product we obtain the statement. ⊓⊔

2.3 Probability

Let D1, D2 be two (discrete or absolutely continuous w.r.t. the Lebesgue measure
over Rn for some n ≥ 1) probability distribution defined over the same σ-algebras.
If Ω = Supp(D1)∪Supp(D2), then the statistical distance between D1 and D2 is
SD(D1, D2) :=

∫
t∈Ω |D1(t)−D2(t)|dt/2. If Supp(D1) ⊆ Supp(D2), then order-2

Renyi divergence RD2(D1||D2) :=
∫
t∈Supp(D1)

D1(t)
2/D2(t)dt. In particular for

any event E ⊆ Supp(D2) it holds that

D2(E) ≥ D1(E)2/RD(D1∥D2) (1)

Let S ∈ Rdr×dr be full rank and c ∈ Kr we define for any x ∈ Kr,

ρS,c(x) := exp(−π · Φ(x− c)T · (ST · S)−1 · Φ(x− c))

11



If S = ς · Idr we simplify to ρς,c, and if c = 0, we omit it. For any matrix
S ∈ Rdr×dr and center c, we denote DS,c the continuous Gaussian distribution
of covariance ST · S and center c. For any lattice Λ ⊂ Rr, the discrete Gaussian
distribution over Λ of parameter S and centre c, denoted DΛ,S,c is the distribution

DΛ,S,c(x) =
ρS,c(x)

ρS,c(Λ)
.

For a positive definite matrix Σ, if a statement does not depend on the particular
choice of square root, we write

√
Σ to denote an arbitrary choice of the square

root. In particular, we write DΛ,
√
Σ,c for the Gaussian distribution.

The smoothing parameter of a lattice Λ is a quantity defined for any ε > 0
as ηε(Λ) = infς>0(ρ1/ς(Λ

⋆) ≤ 1 + ε). For any ε > 0 and k ≥ 1, we define

η
(k)
ε =

√
ln(2k · (1 + 1/ε))/π and it holds that ηε(Λ) ≤ λk(Λ) · η(k)ε for rank-k

lattices Λ ([KNSW20, Lemma 7 (eprint)]). For any full rank matrix S ∈ Rn×n

and any full-rank lattice Λ ⊂ Rn, we say that ηε(Λ) ≤ S if ηε(S
−1Λ) ≤ 1. Note

that this only depends on S · ST, and is coherent with the partial ordering of
matrices we previously defined.

Lemma 2.6 (Adapted from [MP12, Lemma 2.6],[Pei08, Lemma 5.3]).
Let Λ ⊂ Rn be an n-dimensional lattice and s, t > 0, then

Pr(∥DΛ,ς∥ > ς
√
n) ≤ 2−n,

Pr(∥DΛ,ς∥∞ > ς · t) ≤ 2n · e−πt
2

.

Lemma 2.7. Let Λ ⊂ Rn be an n-dimensional lattice and t > 0 and S ∈ Rn×n

a non-singular matrix, then

Pr(∥DΛ,S∥ > smin(S) · t ·
√
n) ≤ βn(t),

where βn(t) = (
√
2πe · exp(−π · t))n.

Proof. Since S is square and non-singular, it holds that S−T · DΛ,S is the same
distribution as DS−TΛ,1, where S

−T is the inverse transpose of S. Now, by [Ban93,

Lemma 1.5], it holds that Pr(
∥∥DS−TΛ,1

∥∥ > t ·
√
n) ≤ (

√
2πe exp(−π · t))n, that

is to say that

Pr(
∥∥S−T · DΛ,S

∥∥ > t ·
√
n) ≤ (

√
2πe exp(−π · t))n.

Now, note that for any x ∈ Rn, it holds that
∥∥S−T · x∥∥ ≤ s1(S

−T ) · ∥x∥. Since
s1(S

−T ) = 1/smin(S), the result follows. ⊓⊔

Lemma 2.8 ([GMPW20, Theorem 3.1 (eprint)]). Let ε ∈ [0, 1) and 1 ≤
n ≤ m be integers. Let Λ ⊂ Rm be an m-dimensional lattice, c ∈ Rm and
Σ ∈ Rm×m be positive definite. For a matrix T ∈ Rn×m such that spanR(Λ ∩
ker(T)) = spanR(ker(T)) and ηε(Λ ∩ ker(T)) ≤

√
Σ. It holds

SD(T · DΛ,
√
Σ,c,DT·Λ,

√
Σ′,T·c) ≤

ε

1− ε

where Σ′ = T ·Σ ·TT.
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Lemma 2.9 ([Reg09, Claim 3.9]). Let Λ be an n-dimensional lattice, ε ∈
(0, 1/2), and r, s > 0 such that r·s√

r2+s2
≥ ηε(Λ). Then

SD(DΛ,r +Dn
s ,Dn√

r2+s2
) ≤ 4 ε.

Lemma 2.10 ([BL00, Lemma 1 (p. 1325)]). Let χ2
m be a Chi-squared random

variable of degree m > 0 then

Pr(χ2
m ≥ m+ 2

√
mk + 2k) ≤ exp(−k) ,

Pr(χ2
m ≤ m− 2

√
mk) ≤ exp(−k) .

Lemma 2.11. Let S ⊂ Or
K be a set such that S = −S and S an invertible

matrix. Then for any c ∈ Or
K

ρS(c+ S) ≥ ρS(c) · ρS(S)

Proof. For any s ∈ S, it holds that ρS(c+s)+ρS(c−s) = ρS(s) ·ρS(c) · (ρS(−2s ·
c) + ρS(2s · c)) = 2ρS(s) · ρS(c) · cosh(π · s · c/ς2) = (ρς(s) + ρς(−s)) · ρς(c) ·
cosh(π · (S−1 · s) · (S−1 · c)) ≥ (ρς(s) + ρς(−s)) · ρς(c) and then by adding over
all pairs −s, s in S, the result follows. ⊓⊔

Lemma 2.12 (Adapted [MR07], [GMPW20, Lem 2.6 eprint]). Let Λ be
an n-dimensional lattice and

√
Σ ≥ ηε(Λ). Then

ρ√Σ(Λ) ∈ [1− ε, 1 + ε] · det(
√
Σ)

det(Λ)

Proof. If
√
Σ ≥ ηε(Λ) then 1 ≥ ηε(

√
Σ
−1 · Λ) and the statement follows. ⊓⊔

Lemma 2.13. Let Λ ⊂ Rn be a full rank lattice. Let R ≥
√
n · η1/2(Λ) be a real.

Then

|Λ ∩B(0, R)| ≤ 1.5 · exp(π · n) ·
(

R√
n

)n

· 1

det(Λ)
.

Proof. Let ς = R/
√
n. By Lemma 2.12, it holds that

ρς(Λ ∩B(0, R)) ≤ ρς(Λ) ≤ 1.5
ςn

detΛ
,

the result follows from the fact that ρς(Λ
⋂

B(0, R)) is a sum of |Λ
⋂

B(0, R)|
terms, all greater than ρς(R) = exp(−πn). ⊓⊔

Lemma 2.14 (simplified [ALLW25, Theorem 9 (eprint)]). Let g, k,m, n, q
be positive integers, a ≥ 1 be a real number, and Σ be positive semi-definite in
Rdm×dm satisfying

– k, n ≤ m, d · (m− k) ≥ Ω(λ),
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– q be an unramified prime s.t. ⟨q⟩ =
∏g

j=1 qj with norm N (qj) = qd/g in OK,
– ng/qd(m−n+1)/g ≤ negl(λ), and there exists ϵ ≤ negl(λ) so that

max
{
ηA, 2

√
d · (akqn)1/(m−k)

}
≤ smin

(√
Σ
)
,

smax

(√
Σ
)
≤ min

{
q1/g/

√
m, a · smin

(√
Σ
)}

,

for some ηA ≥ 8 d
√
m · qn/m+2/(d·m).

Then the following distributions are statistically close in λ:{(
A,U

) ∣∣∣∣∣ A← (OK/q)n×m

X← (DΛ⊥
q (A),

√
Σ)

k

}
≈s

{(
A,U

) ∣∣∣∣∣ X← (DOm
K ,
√
Σ)

k

A← (OK/q)n×m : A ·X ≡ 0

}
.

Lemma 2.15 (simplified [ALLW25, Lemma 26 (eprint)]). Let g, k,m, n, q
be positive integers, a ≥ 1 be a real number, A ∈ (OK/q)n×m be primitive, and
Σ ∈ Rdm×dm be positive semi-definite satisfying

– k, n ≤ m, d · (m− k) ≥ Ω(λ),
– q is an unramified prime s.t. ⟨q⟩ =

∏g
j=1 qj with N (qj) = qd/g, and

– there exists ϵ ≤ negl(λ) that

max
{
ηϵ(Λ

⊥
q (A)), 2

√
d · (akqn)1/(m−k)

}
≤ smin

(√
Σi

)
,

smax

(√
Σi

)
≤ min

{
q1/g/

√
m, a · smin

(√
Σi

)}
.

Then the columns of X← (DΛ⊥
q (A),

√
Σ)

k are (OK/q)-linearly independent with

overwhelming probability in λ.

Lemma 2.16 ([ALLW25, Lemma 3 (eprint)]; Generalisation of [LPR13,
Theorem 4.1]). Let n,m, q be positive integers with n ≤ m ≤ poly(d). For
A ← Rn×m

q , with probability 1 − 2−Ω(dm) we have η2−Ω(dm)(Λ⊥q (A)) ≤ 8d
√
m ·

qn/m+2/(d·m).

Lemma 2.17 ([LSS14, Lemma 4.2]). For any m-dimensional lattice Λ ⊆ Rm

and rank m matrix
√
Σ ∈ Rm×m, let P = DΛ,

√
Σ,w and Q = DΛ,

√
Σ,z for some

fixed w, z ∈ Rm. If w, z ∈ Λ, let ϵ = 0. Otherwise, fix ϵ ∈ (0, 1) and assume that

smin(
√
Σ) ≥ ηϵ(Λ). Then RD(P∥Q) ≤ ( 1+ϵ

1−ϵ )
2 · exp(2π∥w − z∥2/smin(

√
Σ)2).

Lemma 2.18. Let K be a number field of degree d. Let n,m, k ∈ N. Let A ∈
Rn×m

q be such that Λ⊥q (A) is full-rank, and let
√
Σ ∈ Rdm×dm satisfy smin(

√
Σ) ≥

ηϵ(Λ
⊥
q (A)) for some 0 < ϵ ≤ 2−2k. Let ei ∈ Rm be the i-th unit vector for

i ∈ [k]. The Rényi divergence between the distributions P :=
∏

i∈[k]DΛ⊥
q (A),

√
Σ

and Q :=
∏

i∈[k]DΛ⊥
q (A),

√
Σ,ei

is upper-bounded by

RD(P∥Q) ≤ 5 exp

(
2π · dk

smin(
√
Σ)2

)
.
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Proof. Denote by 1 + δ := (1 + ϵ)/(1− ϵ), equivalently δ = 2ϵ/(1− ϵ). Using the
multiplicative property of Rényi divergence, we have

RD(P∥Q) ≤
∏
i∈[k]

(1 + δ)2 · exp
(
2π∥ei∥2/smin(

√
Σ)2

)
≤ (1 + (22k − 1) · δ) · exp

(
2π · dk

smin(
√
Σ)2

)
≤ 5 · exp

(
2π · dk

smin(
√
Σ)2

)
,

where the first inequality is by Lemma 2.17, the second uses (1+x)r ≤ 1+(2r−1)x
for any x ∈ [0, 1] and r ∈ R\ (0, 1), and the last is by 22k · δ = 22k ·2ϵ/(1− ϵ) ≤ 4.

⊓⊔

2.4 Cryptographic Assumptions

Definition 2.1 (SIS Problem).
Let the parameters params = (OK, q, n,m, β) be parametrised by λ, where OK is
the ring of integers of a number field K, q, n,m are positive integers and β > 0.
Write Rq := OK/(q ·OK). A SISparams problem asks the following: Given a uniform
matrix A←Rn×m

q , find a vector u ∈ Om
K such that

(1) A · u = 0 mod q and (2) 0 < ∥u∥ < β.

For any PPT A, its advantage Adv
SISparams

A (λ) against this problem is equal to the
probability that it solves the problem.

Definition 2.2 (LWE Problem).
Let the parameters params = (OK, q, n,m, χ) be parametrised by λ, where OK is
the ring of integers of a number field K, q, n,m are positive integers and χ is a
distribution over OK. Write Rq := OK/(q · OK). An LWEparams problem asks the
following: Given a uniform matrix A← Rn×m

q , and a vector b ∈ Rm
q which is

either

(1) bT = sTA+ eT mod q where s←Rn
q , e← χm,

or (2) b← Rm
q is uniformly random,

distinguish which one is the case. For any PPT A, its advantage Adv
LWEparams

A (λ)
against this problem is equal to the absolute difference in the probability of its
response under these two cases.

Definition 2.3 (k-SIS Problem).
Let the parameters params = (OK, q, n,m, k,Σ, β) be parametrised by λ, where
OK is the ring of integers of a number field K of degree d, q, n,m, k are positive
integers with k < m, Σ ∈ Rdm×dm and β > 0. Write Rq := OK/(q · OK). A
k-SISparams problem asks the following: Given a uniform matrix A← Rn×m

q and

k vectors X = (x1, . . . ,xk) ∈ Om×k
K where xi ← DΛ⊥

q (A),
√
Σ for each i ∈ [k], find

a vector u ∈ Om
K such that

(1) A · u = 0 mod q, (2) 0 < ∥u∥ < β, and (3) u ̸∈ K- span(X).
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For any PPT A, its advantage Adv
k-SISparams

A (λ) against this problem is equal to
the probability that it solves the problem.

Definition 2.4 (k-LWE Problem).
Let the parameters params = (OK, q, n,m, k,Σ, χ) be parametrised by λ, where
OK is the ring of integers of a number field K of degree d, q, n,m, k are positive
integers with k < m, Σ ∈ Rdm×dm and χ is a distribution over OK. Write
Rq := OK/(q · OK). An LWEparams problem asks the following: Given a uniform
matrix A← Rn×m

q , k vectors X = (x1, . . . ,xk) ∈ Om×k
K where xi ← DΛ⊥

q (A),
√
Σ

for each i ∈ [k], and a vector b ∈ Rm
q which is either

(1) bT = sTA+ eT mod q where s←Rn
q , e← χm,

or (2) bT = d+ eT mod q where d←
{
d ∈ Rm : dTX = 0 mod q

}
,

distinguish which one is the case. For any PPT A, its advantage Adv
k-LWEparams

A (λ)
against this problem is equal to the absolute difference in the probability of its
response under these two cases.

3 Generating module lattices with Gaussian vectors

In this section, we study the surjectivity of Gaussian matrices. For a matrix
where each column is sampled from an OK-moduleM, we say that a matrix is
surjective if OK-linear combinations of its columns generate the moduleM.

3.1 Surjective matrices over finite fields

We first establish some facts about random matrices over finite fields F to be used
in subsequent proofs. First, extending the above notion of surjectivity to F-vector
spaces, we show that a random matrix over F is surjective with overwhelm-
ing probability in its dimensions if each entry of the matrix is independently
distributed and has constant min-entropy.

Lemma 3.1. Let r, u ≥ 0 be integers. Let F be a finite field, and (Di,j)1≤i≤r,1≤j≤m
be distributions over F such that there exists α ∈ (0, 1) such that for any i, j,
maxx∈F Di,j(x) ≤ α. If M ∈ Fr×m is a random matrix such that

– all the entries of M are independent random variables, and
– the (i, j)-th entry of M is sampled from Di,j,

then it holds that
Pr(M · Fm = Fr) ≥ 1− r · αm−r+1.

Proof. Let H be a subspace of Fm of dimension k and i = 1, . . . , d, it holds that
the probability of a vector in Fm sampled from Di,1 × . . .×Di,m belonging to
this subspace is upper bounded by αm−k [NP20, Generalisation of Lemma 2.3].
As F is a field, the matrix M is surjective if and only if MT is injective. We now
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lower-bound the probability of MT being injective when M is built row by row.
Let Mi be the matrix composed of the first i rows of M. For i = 1, . . . , r, the
matrix MT

i is injective if and only if MT
i−1 is injective and the i-th row of M

is not in the span of the i − 1 previous ones, which has dimension i − 1. The
probability of MT being injective is then lower-bounded by

r∏
i=1

(1− αm−i+1) =

m∏
i=m−r+1

(1− αi) ≥ (1− αm−r+1)r ≥ 1− r · αm−r+1. ⊓⊔

The next lemma shows the equivalence between a matrix B with columns in
M being surjective and the simpler condition of (B mod p) being surjective for
prime ideals p of OK.

Lemma 3.2. For any integers r, u ≥ 1, a matrix B ∈Mm satisfies B ·Om
K =M

if and only if (B mod p) is surjective inM/pM for any prime ideal p of OK.

Proof (Adaptation of the proof of [NP20, Lemma 2.1]). If B is surjective inM,
then it is clearly surjective modulo any prime p. Now we assume that B mod p
is surjective modulo every p. LetM′ = B · Om

K . Let p be any ideal, we will show
that p does not divide det(M′)/ det(M). Since the matrix B mod p is surjective,
there exists a square submatrix B′ of B which is invertible modulo p, and hence
full-rank over K. Let M′′ = B′ · Or

K ⊂ M′. Assume that the ideal p divides
det(M′)/ det(M), then it also divides det(M′′)/ det(M) by inclusion, which is
equivalent to that detK(B

′) ∈ det(M) · p, which contradicts the fact that B′

is invertible in M/pM by Lemma 2.2. Since p can be any ideal, it holds that
det(M′) = det(M), and hence that B is surjective inM. ⊓⊔

3.2 Surjective matrices over free modules

In this subsection, we prove that Gaussian matrices of size r ×m over some full
rank modulesM are surjective overM with high probability when m ≥ 2r. The
main idea of the proof is to consider the matrix modulo all the primes p of the
number field, showing that with high probability (using Lemmas 3.1 and 3.2),
the matrix modulo p is surjective over OK/p. We first prove it in the case of free
modules in Lemma 3.4, where the main contribution of this subsection is, and
then generalise it in Theorem 3.1. We first prove that the Gaussian distribution
over some ideal I modulo the ideal I · p satisfies the distribution hypothesis of
Lemma 3.1.

Lemma 3.3 (Generalised from [JLWG25, Corollary 7]). Let ε ∈ (0, 1/
√
2),

I be a (possibly fractional) ideal of OK, B ≥ 1, c ∈ KR be a centre and ς ≥
B · ∆1/d

K · N (I)1/d · η(d)ε . For any integral ideal a ⊂ OK, we define D(a)
I,ς,c the

distribution DI,ς,c modulo a · I. Then for any a ∈ I/(I · a), it holds that

D(a)
I,ς,c(a) ≤ (1 + 4ε) ·

{
1
N (a) if N (a) ≤ Bd

1
Bd else .

17



Lemma 3.4 (Assuming GRH). Let r ≥ 1 and m ≥ 2r be integers. Let
C = [c1, . . . , cm] ∈ Rrd×rm a centre matrix and ς > 0. Let S ≥

√
2ςI or equal

to ςI. Let M ⊂ Kr be a free module of rank r. Let ε ∈ (0, 1/4). There exists
an absolute constant c > 1such that for any B > log(∆K)

c/d, assuming that the
following two inequalities hold

Bd ≥ r · d2 ln(dr · ς) and ς ≥ B ·∆1/d
K · ηε(M),

and X = [x1, . . . ,xm] ∈ Kr×m such that xi ← DM,S,ci , then

Pr
X
[X · Om

K ̸=M] ≤ m · ε
1− ε

+ r ·
(
B

2

)−(r+1)d

+ r · 2−dr

+ (1 + 4ε)
m−2r+1 · r · PK(m− 2r + 1),

where PK(s) =
∑

pN (p)−s is the prime zeta function of K.

Proof. We abuse the notation and write the distribution of X as DMm,S,C.

From free modules to Or
K. Let B ∈ Kr×r generating M. It holds that the

distribution of the columns of X is the same as the distribution B · DOr×m
K ,S′,C′

where S′ = B−1 · S and C′ = B−1 · C. Note that the condition on S implies

that S′ ≥ B ·∆1/d
K · ηε(Or

K). We can then assume without loss of generality than
M = Or

K.

From elliptic to circular Gaussian. Let Σ = SST − ς2I, note that Σ is definite

positive, let
√
Σ be a fixed square root of Σ. Now, let ˜DOr×m

K ,S,C be the distri-

bution DOr×m
K ,ς,C−B where B← DOr×m

K ,
√
Σ. By [GMPW20, Theorem 4.5], the

condition on S and Lemma B.2, it holds that the statistical distance between
˜DOr

K,S,C and DOr
K,S,C is less than m · ε/(1− ε). It then holds that

Pr
X
[X · Om

K ̸= Or
K] ≤ m · ε

1− ε

+
∑

B∈Or×m
K

DOr×m
K ,

√
Σ′(B) Pr

A←D
Or×m

K ,ς,C−B

(A · Om
K ̸= Or

K).

Bound for circular Gaussian. We now assume that S = ς · I with ς ≥ B ·∆1/d
K ·

ηε(Or
K). Note that in that case, the coefficients of X are all independents and

sampled from DOK,ς,c for some c ∈ K, so by Lemma 3.3, Lemma 3.1 holds for any
submatrix of X. Write X = [X1|X2] with X1 ∈ Or×r

K , and let p be a prime ideal
of norm ≥ Bd. Then by Lemma 3.2, X1 is invertible modulo p with probability
≥ 1− r(B/2)−(r+1)d and in that case, in particular detK(X1) ̸= 0, we assume
this is the case for the rest of the proof. By [Ban93, Lemma 1.5], with probability
1− r · 2dr, the norm of every column of X1 is bounded by

√
rd · ς, and hence its

determinant is bounded by (
√
rdς)rd. Let P be the set of prime ideals dividing

detK(X1), by Lemma B.1 it holds that |P| ≤ rd2 · log(
√
rdς) =: l. We now prove
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that X is invertible modulo every prime ideal. For any prime p not in P, X1 is
invertible modulo p, and so is X. For all p ∈ P , by Lemma 3.1 it holds that X2 is
invertible mod p with probability ≥ 1− r(1− 4ε)m−2r+1 ·α for α = B−(m−2r+1)d

if N (p) ≥ Bd and α = N (p)−(m−2r+1) else.
Let us order the primes of OK as {p1, p2, . . .} and P = {q1, . . . , ql}, both in

increasing norm order. It holds that N (pi) ≤ N (qi) for any i = 1, . . . , l. We let
B be a real such that the first l prime ideals of OK have their norm ≤ Bd. The
existence of B will be proven at the end of the proof. Under the condition that
X1 is invertible and has bounded columns, by the union bound it holds that

Pr(X not surjective) ≤
l∑

i=1

Pr(X2 not surjective mod qi)

≤ r · (1 + 4ε)m−2r+1 ·

(
a∑

i=1

1

N (qi)m−2r+1
+

l∑
i=a+1

1

Bd(m−2r+1)

)

≤ r · (1 + 4ε)m−2r+1 ·
l∑

i=1

1

N (pi)m−2r+1
≤ r · (1 + 4ε)m−2r+1 · PK(m− 2r + 1).

Now let us prove that B satisfying our condition exists and give a lower bound on
it. The condition is that B is such that the first l primes of OK are of norm less
than Bd. By [BS96, Theorem 8.7.4], the GRH implies that for X ≥ log(∆K)

O(1),
the number of prime ideals πK(X) of norm less than X is less than 1.1 ·X/ ln(X).
This implies that as long as Bd ≥ log(∆K)

O(1), then πK(B
d) ≤ Bd, then as long

as
l = r · d2 ln(dr · ς) ≤ Bd,

the norm of the first l prime ideals is less than Bd. ⊓⊔

3.3 Generating non-free modules

From now on, we fix a full-rank (not necessarily free) moduleM⊂ Kr given by
a pseudo-basisM =

∑r
i=1 bi · Ii where Ii are fixed fractional ideals of OK and

bi ∈ Kr. Our goal is to generalise Lemma 3.4 for non-freeM. ForM = Or
K, we

proved that if sufficiently many vectors are sampled from Or
K, then the matrix

they form is surjective over (OK/p)r for any ideal p, and then surjective over Or
K.

We will prove the same result withM/pM for not necessarily freeM.
Let p be a prime ideal with residue field F = OK/p. The setM/pM has a

natural structure of F-vector space of dimension r. For any matrix B ∈Mm, we
define (B mod p) the associated matrix on (M/pM)m.

Theorem 3.1 (Assuming GRH). Let r ≥ 1 and m ≥ 2r be integers. Let
C = [c1, . . . , cm] ∈ Rrd×rm a centre matrix and ς > 0. Let S ≥

√
2ςI or equal to

ςI. LetM⊂ Kr be a module of rank r. Let ε ∈ (0, 1/4). There exists an absolute
constant c > 1 such that for any B > log(∆K)

c/d, assuming that the following
two inequalities hold

Bd ≥ r · d2 ln(dr · ς) and ς ≥ B ·∆1/d
K · ηε(M),
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and X = [x1, . . . ,xm] ∈ Kr×m such that xi ← DM,S,ci , then

Pr
X
[X · Om

K ̸=M] ≤ m · ε
1− ε

+ r ·
(
B

2

)−(r+1)d

+ r · 2−dr

+ (1 + 4ε)
m−2r+1 · r · PK(m− 2r + 1),

where PK(s) =
∑

pN (p)−s is the prime zeta function of K.

Proof. By the same arguments than the proof of Lemma 3.4, we can assume
without loss of generality thatM = ⊕r

i=1Ii with I1, . . . , Ir ideals, and S = ςIrd

with ς ≥ B ·∆1/d
K · ηε(⊕1≤i≤dIi). In particular, it holds that ς ≥ B ·∆1/d

K · ηε(Ii)
for any 1 ≤ i ≤ r, in that case, Lemma 3.3 implies that Lemma 3.1 holds
for any submatrix of X, we can then run the exact same proof as the one of
Lemma 3.4. ⊓⊔

Corollary 3.1 (Prime-Power Cyclotomics, Assuming GRH). Let pk > 2
a prime power, and K = Q(ζpk) be the pk-cyclotomic number field of degree
d = (p− 1) · pk−1. Let 0 < ε < 2−6. LetM⊂ Kr be a full rank module. Then for
any S ∈ Rdr×dr, m ≥ 1 and centre C ∈ Kr×m

R such that

S ≥ 9
√
2 ·r 1

d · log (rd · ηε(M))
1
d ·d ·ηε(M) and m ≥ 2r+

log(1/ε) + 1 + log(2d)

log(p/1.4)
,

it holds that

Pr
X←Dm

M,S,C

(X · Om
K ̸=M) ≤ m · (ε+ 2−dr).

Proof. Follows from Theorem 3.2 and Lemmas B.3 and 3.6. ⊓⊔

3.4 Asymptotic behavior of PK

The upper bounds in Lemma 3.3 and Theorem 3.1 are described in terms of
the prime zeta function PK. In the following, we upper bound PK in terms of
the smallest prime ideal norm NK, for which explicit the explicit value is known
when K is a cyclotomic field of prime-power conductor.

Lemma 3.5. For any number field K such that there is exactly aK prime ideals
of norm NK, let κK ∈ (0, 1) be the ratio between the norm of the smallest ideal
and the norm of the second-smallest. Then for any x ≥ 2, it holds that

PK(x) ≤
aK
Nx
K
·
(
1 +

2d

aK
·NK · κx−1

K

)
≤ 3d

Nx−1
K

.

Proof. Let N be the norm of the second-smallest prime ideal of OK, i.e. κK =
NK/N . For any n ≥ N , let an be the number of prime ideals of norm N . For
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any x ≥ 1, let πK(x) be the number of prime ideals of norm ≤ x. We use Abel’s
summation formula and the fact that πK(x) ≤ d · x for any x ≥ 2:

PK(x)− aK ·N−xK =
∑
n≥N

an
nx

= lim
u→∞

(
πK(u)

ux

)
+

∫ ∞
N

πK(u) ·
x · du
ux+1

≤d · x ·
∫ ∞
N

u−xdu = d · x

x− 1
·N−x+1 ≤ 2d ·N−x+1.

Substituting N = NK/κK and rearranging gives the first inequality

PK(x) ≤
aK
Nx
K
·
(
1 +

2d

aK
·NK · κx−1

K

)
.

The second inequality follows from aK ≤ d and κK ≤ 1. ⊓⊔
Lemma 3.6. Let q = pl be a power of a prime and let Kq be the q-th cyclotomic
field. Then NKq

= p and the norm of the second-smallest ideal is at least q + 1.

Proof. First, it holds that p totally ramifies in Kq, so an ideal of norm p exists
in Kq, now let us prove that there is no smaller ideal in this field. Let N ̸= p
be a prime and p a prime of Kq above N . The norm of p is N l where l is the
smallest integer such that N l = 1 mod q, in particular, since N l ≠ 1, it holds
that N l ≥ q + 1. ⊓⊔

In general, for any number field K there exists bK such that PK(x) ∼x→∞
bK ·N−xK , we provide a sagemath script computing approximation of bK for any
cyclotomic number field. Note that κK can be arbitrary close to 1: if p = 2l − 1
is a Mersenne prime, then one can prove that κK = (p− 1)/p.

In the ideal case (r = 1), Theorem 3.1 can be compared to [SS11, Lemma
4.4], where the probability of generating OK with two elements is proven close to
1/ζK(2) for power-of-two cyclotomic number fields (note that for m = 2, r = 1,
our upper bound is equal to ∞). A similar proof can be used to prove that for
any number fields, for suitable parameters, the probability of generating any
ideal a with m elements of a is close to 1/ζK(m). One can note that when m
goes to infinity, it holds that 1/ζK(m) ∼ PK(m) ∼ 1−N−mK .

3.5 Specialised bounds

We summarise by giving bounds for Gaussian matrices being surjective for general
number fields and for the special case of prime-power cyclotomic fields.

Theorem 3.2 (General Number Field, Assuming GRH). Let K be a
number field of degree d ≥ 2 and of smallest ideal norm NK. Let 0 < ε < 2−6.
LetM⊂ Kr be a full rank module. Then for any S ∈ Rdr×dr, m ≥ 1 and centre
C ∈ Kr×m

R such that

S ≥ 9
√
2 · r 1

d · log
(
r ·∆

1
d

K · ηε(M)
) 1

d

·∆
1
d

K · ηε(M) and

m ≥ 2r +
log(1/ε) + 1 + log(2d)

log(NK/1.4)
,
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it holds that

Pr
X←Dm

M,S,C

(X · Om
K ̸=M) ≤ m · (ε+ 2−dr).

Proof. We show below that Theorem 3.1 holds for some B ≥ 4. The values of
the parameters and Lemma 3.5 give

m · ε
1− ε

+ r

(
B

2

)−(r+1)d

+ r2−dr + (1 + 4ε)
m−2r+1 · r · PK(m− 2r + 1)

≤ 1.2 ·m · ε+ r · 2−d · 2−dr + r2−dr + r(1.4)m−2r+1 · 3d ·N−(m−2r)K

≤ 1.2 ·m · ε+ r · (2−d · 2−dr + 2−dr + 1.4 · ε)
≤ ε · (1.2m+ 1.4r) + 2r · 2−dr ≤ m · (ε+ 2−dr).

Now we argue for the existence of B. Without loss of generatity we assume
Σ = ς · I. The hypothesis of Theorem 3.1 are satisfied if Bd ≥ r · d2 ln(dr · ς) and
ς ≥ B ·∆1/d

K · ηε(M), that is to say if B satisfies

Bd ≥ rd2 · log(dr ·∆K · ηε(M) ·B) = rd log(Bd) + rd2 log(dr ·∆K · ηε(M)).

By Lemma B.5, this inequality holds for any B satisfying

Bd ≥ 2
(
rd2 log(dr ·∆1/d

K · ηε(M)) + rd log(rd)
)
.

It holds that(
2
(
rd2 log(dr ·∆1/d

K · ηε(M)) + rd log(rd)
))1/d

≤
(
2r ·

(
(d2 + d) log(d) + d2 log(r∆

1/d
K · ηε(M)) + d log(r)

))1/d
≤ (2r)1/d ·

((
(d2 + d) log(d)

)1/d
+
(
d2 log(r∆

1/d
K · ηε(M))

)1/d
+ (d log(r))1/d

)
≤ (2r)1/d ·

(
2.5 + 2 log(r∆

1/d
K · ηε(M))1/d +

√
2 log(r)

)
≤ 9 · r1/d · log

(
r∆

1/d
K · ηε(M)

) 1
d

,

hence taking B = 9 · r1/d · log(r∆1/d
K · ηε(M))1/d gives us the desired result. ⊓⊔

4 Smoothing parameter of kernel lattices

In this section we upper bound ηε(Λ
⊥(X)) for X = [x1 | · · · | xm] ∈ Or×m

K ,
where xi ← DOr

K,ς . We emphasise that the lattice Λ⊥(X) of interest here is
the rank-deficient OK-kernel lattice of X but not the full-rank q-ary lattice
Λ⊥q (X) := {x ∈ Om

K ,X · x = 0 mod q}.
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4.1 Baseline: Exponential bound for m > r

We first write down an approach which gives an upper bound of ηε(Λ
⊥(X)) which

is exponential in r. It uses the short vectors in X to construct m−r short linearly
independent kernel vectors. Via the real basis of OK we transform them into
d · (m− r) short linearly independent kernel vectors in Rdm. This way we obtain
a bound on λd(m−r)(Λ

⊥(X)) and the smoothing parameter is exponential in r.
This can be seen as extending the approach of [LSS14] to r > 1,m > 2. The
proof also relies on ideas from [BF11, Thm 4.2 (eprint)].

Lemma 4.1. Let ς, t > 0 and 0 < r < m be integers. Let X = [x1 | · · · | xm] ∈
Or×m
K , where xi ← DOr

K,ς . We denote X1 := [x1 | · · · | xr], X2 := [xr | · · · | xm]
and assume X1 ∈ GLr(K). Then

Pr
X

(
ηε(Λ

⊥(X)) ≤ δK ·
√
rd · (

√
r · ς · t)r · η(d·(m−r))ε

)
≥ 1− 2m · rd · e−πt

2

.

Proof. The inverse of X1 can be written as X−11 = 1
det(X1)

·adj(X1) where adj(X1)

has entries in OK. Then det(X1) ·X−11 is a matrix over the ring and

[X1 | X2] ·
[
det(X1) ·X−11 0

0 Im−r

]
= [det(X1) · Ir | X2].

The kernel of [det(X1) · Ir | X2] contains K linearly independent vectors (xr+i ||
det(X1) · ei) for i ∈ [m− r]. Hence, vectors det(X1) · (X−11 xr+i || ei) ∈ Om

K for
i ∈ [m−r] are also linearly independent and in the kernel ofX. It remains to bound
the norm of these vectors. Denote yi := det(X1)·X−11 xr+i ∈ Or

K and let yij be the
j-th coefficient of yi. Then X1 ·yi = det(X1) ·xr+i. By the Cramer’s rule the only
solution to this linear equation over K can be expressed as yij = det(X̃j)/ det(X1).

Here X̃j stands for the matrix X1 with its j-th column replaced by det(X1) ·xr+i.
Cancelling the det(X1) factor we get yij = det

[
x1 | . . .xr+i . . . | xr

]
. Hence,

∥Φ(yi)∥∞ = max
j∈[r]

(
∥∥Φ(det [x1 | . . .xr+i . . . | xr

]
)
∥∥
∞)

= max
j∈[r]

max
k∈[d]

det
[
σk(x1) | . . . σk(xr+i) . . . | σk(xr)

]
≤ max

j∈[r]
max
k∈[d]
∥σk(xr+i)∥ ·

∏
ℓ∈[r]\{j}

∥σk(xℓ)∥

≤ max
j∈[r]

√r · ∥xr+i∥∞ ·
∏

ℓ∈[r]\{j}

√
r · ∥xℓ∥∞


≤ (
√
r · ς · t)r

with probability at least 1 − r · 2dr · e−πt2 . Here we apply the Hadamard’s
inequality for the first upper bound, the norm inequalities for the second and the
tail bound from Lemma 2.6 for the last transition. Then for the Euclidean norm
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we get ∥yi∥ ≤
√
dr · (

√
r · ς · t)r for all i ∈ [m− r]. This holds with probability

1−m · 2dr · e−πt2 , since the tail bound must be true for all xℓ, ℓ ∈ [m].
As a result, we obtain m − r vectors of bounded norm that are linearly

independent over K. Multiplying by the ring basis BOK we extend this set to
d · (m− r) linearly independent vectors in Φ(Λ⊥(X)) ⊂ Rdm with norm bounded
by δK ·

√
rd · (

√
r · ς · t)r. Applying a classic bound on smoothing from §2.3, we

get the statement. ⊓⊔

4.2 Polynomial bound for m ≥ Ω(log(ϵ−1)/ log(f)) in extensions of
f-th cyclotomic field

When r ≥ ω(1), which is typically the case when the ring degree d is small, the
strategy in §4.1 leads to a superpolynomial bound on λd(m−r)(Λ

⊥(X)) which is
often not usable in applications. For a more useful bound we turn to the approach
of [AR16] which focuses on the setting K = Q. We extend their strategy to any
number field K ⊇ Q(ζf ) containing the f -th cyclotomic field where the quality
of the obtained bound depends on f . For a high level description of our proof
strategy, see §1.1. For readability, we chose to name all of the implied absolute
constants of the theorems and lemmas of this section C. We highlight that those
refer to possibly different constants.

Theorem 4.1. Let K be a number field of degree d containing the cyclotomic
field of conductor f . Let S ≥ max(η1/2(Or

K),
√
2πd), and X ∈ Or×m

K be a matrix
with columns sampled from DOr

K,S for some m ≥ 1. Let ε > 0, and TK,r,S =

r · log(dr ·∆1/(2d)
K · smin(S)). There exists an absolute constant C > 2 such that

for

m ≥ C · TK,r,S · log(TK,r,S) +
2 log(1/ε)

log(f/1.8)
,

we have with probability ≥ 1− ε that

ηε(Λ
⊥(X)) = O

(
η((m−r)d)ε ·m1.5 · d12 · δ14K · f2 ·∆4/d

K · smin(S)
)
.

Corollary 4.1 (Cyclotomics version of Theorem 4.1). Let f > 2 and
K = Q(ζpk) be the cyclotomic number field of conductor f and degree d. Let

1 ≤ r ≤ m, ε > 0 and T = r · log(r ·d3/2 · smin(SX)). Let SX ∈ Rdr×dr be positive
definite, and X ∈ Or×m

K be a matrix with columns sampled from DOr
K,SX

and
c ∈ Om

K . There exists an absolute constant C > 2 such that for

SX ≥ max(η1/2(Or
K),
√
2πd), m ≥ C · T · log(T ) + 2 log(1/ε)

log(pk/1.8)
,

with probability ≥ 1− ε we have

ηε(Λ
⊥(X)) = O

(
η((m−r)d)ε ·m1.5 · f2 · d16 · smin(SX)

)
.
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Note that the lower bound on m in Theorem 4.1 has two summands, with
only the second one (2 log(1/ε)/ log(f/1.8)) related to the failure probability of
the theorem. This is because the theorem has a sharp threshold in m, due to the
“pigeonhole” nature of Lemma 4.7. That is, we show that to prove the existence
of short vector in Λ(X), m must be larger than C · TK,r,S · log(TK,r,S). Once this
threshold is reached, we show in Lemma 4.9 that we can increase the width of
X to lower the failure probability. Indeed, we show that adding a column to X
multiplies the probability of failure of the theorem by 1− 1/f , where ζf ∈ K is a
root of unity. This leads to the log(1/ε)/ log(f) factor in the lower bound on m.

Note that this improves on [AR16] lifted to modules in two ways. The second
summand is superlinear in r and logarithmic in d in contrast to lifting [AR16]
directly, where the lower bound would be superlinear in r · d. The first summand
is also smaller by a factor of log f .8

To prove Theorem 4.1, we state in Lemma 4.2 that for a large enough set
A ⊆ OK there exists a preimage of a small multiple of the i-th unit vector ei ∈ Or

K
for any i. This almost generalises Lemma 4.2 in [AR16] to the ring setting except
that instead of obtaining a preimage of ei we only obtain a preimage of a small
multiple of f · ei. To not break the flow, we defer the proof of Lemma 4.2 to §4.3.

Definition 4.1. We say that a set A ⊂ OK is B-admissible if it is symmetric
(−A = A); it contains 0 and 1; its size is at least 2d; all of x ∈ A satisfy
∥x∥∞ ≤ B. If a set A is B-admissible, we define

AΠ = {a · b | a, b ∈ A}, AΣΠ = {a+ b | a, b ∈ AΠ}.

Lemma 4.2. Let K ⊇ Q(ζf ) be a number field of degree d containing the cyclo-

tomic field of conductor f . Let S ≥ max(η1/2(Or
K),
√
2πd) and let X ∈ Or×m

K be
a matrix with columns sampled from DOr

K,S for some m ≥ 1.
Let ε > 0, 1 ≤ i ≤ r, and A ⊂ OK be B-admissible set for some B > 0.

Let T = TK,r,B,S = r · log(r ·B · smin(S)/∆
1/(2d)
K ), then there exists an absolute

constant C > 2 such that for any

m ≥ C · T · log(T ) + 2 log(1/ε)

log(f/1.8)
,

there exists c ∈ Am
ΣΠ , u ∈ OK with ∥u∥∞ ≤ f2/2 and a′ ∈ AΠ such that

X · u · c = f · a′ · ei with probability ≥ 1− ε over the randomness of X.

Lemma 4.2 gives a probabilistic guarantee for the existence of a short preimage of
f ·a ·ei for some short a ∈ AΠ defined relative to a set A. To obtain preimages of
f · ei, our strategy is to invoke Lemma 4.2 again on a different B′-admissible set
A′ whose elements are coprime with a. This gives a short preimage of f ·a′ ·ei for
a short a′ ∈ A′Π . We then use the co-primality of a and a′ and an effective version
of Bezout’s identity (Lemma 2.3) to create a preimage of f · ei. We discuss why

8 Reducing this part of the bound by a factor of d seems unlikely due to the rich structure
of K, i.e. the d Z-vectors corresponding to an OK-vector are highly correlated.
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preimages of f · Ir are sufficient in the statement on the smoothing parameter in
Lemma 4.5. We did not find a formula for the size of the set A′ in the literature,
so we provide one in Lemma 4.3, which we think might have application beyond
this work.

Lemma 4.3. Let K be a number field of degree d with ring of integer OK.
Let a be an integral ideal of OK with prime factorisation a =

∏l
i=1 p

ei
i and

ε = min(2−d, 3−l/10). Then for

R ≥
N (a)1/d ·∆1/d

K · ln(1/ε1/d)
2
√
d

,

we have ∣∣∣∣{x ∈ OK, ∥x∥ ≤ R, x coprime with a
}∣∣∣∣ ≥ Rd

4
√
∆K · dd/2 · 2d+l

.

Proof. Let D denote the Gaussian distribution over OK with parameter ς ≥
N (a)1/d ·∆1/d

K · ln(1/ε)/d tail-cut for ∥x∥ ≥ R := 2 ·
√
d ·ς. By [Ban93, Lemma 1.5]

and [MR07, Lemmas 3.3 and 4.4] and some computations [FPS22, Lemma 2.7],
it holds that for any ideal a such that ς ≥ ηε(a), D(a) ∈ [1− 5ε, 1 + 5ε] · 1/N (a).

We write a =
∏l

i=1 p
ei
i . An element x ∈ OK is coprime with a if and only if it

does not belong to any of the pi. We now compute the probability of sampling
an element coprime to a from D. By the inclusion-exclusion principle and the
fact that for any prime ideal p, q, p ∩ q = pq, it holds that

D(OK \
l⋃

i=1

pi) =

l∑
k=0

(−1)k
∑
|I|=k

D(
∏
i∈I

pi) ≥
l∑

k=0

(−1)k
∑
|I|=k

1− (−1)k · 5ε
N (
∏

i∈I pi)

=

l∑
k=0

(−1)k
∑
|I|=k

1

N (
∏

i∈I pi)
− 5ε

l∑
k=0

∑
|I|=k

1

N (
∏

i∈I pi)

=

l∏
i=1

(
1− 1

N (pi)

)
− 5ε ·

l∏
i=1

(
1 +

1

N (pi)

)
Setting ε = min(2−d, 0.1 ·

∏
i(N (pi) − 1)/(N (pi) + 1)), we get that D(OK \⋃l

i=1 pi) ≥ 0.5·
∏

i(1−1/N (pi)). To make this into a counting argument it suffices
to say that the maximal value of D(x) is equal to D(0) ≤ (1 + 5ε) ·

√
∆K/ς

d ≤
2
√
∆K/ς

d. Then the number of ring elements of ℓ2 norm less than R coprime
with a is greater than

D(OK \
⋃l

i=1 pi)

D(0)
≥
∏

i(1− 1/N (pi)) · ςd

4
√
∆K

=

∏
i(1− 1/N (pi)) ·Rd

4
√
∆K · dd/2 · 2d

.

Note that since N (pi) ≥ 2 for all i, then
∏

i(1− 1/N (pi)) ≥ 2−l and
∏

i(N (pi)−
1)/(N (pi) + 1) ≥ 3−l, which concludes the proof. ⊓⊔
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Lemma 4.4. Let K ⊇ Q(ζf ) be a number field of degree d containing the cyclo-

tomic field of conductor f . Let S ≥ max(η1/2(Or
K),
√
2πd) and X ∈ Or×m

K be a
matrix with columns sampled from DOr

K,S for some m ≥ 1.

Let ε > 0, and TK,r,S = r · log(dr · δK · ∆1/(2d)
K · smin(S)). There exists an

absolute constant C > 2 such that for

m ≥ C · TK,r,S · log(TK,r,S) +
2 log(1/ε)

log(f/1.8)
,

there exists a matrix U ∈ Om×r
K with ∥U∥ ≤ O(

√
md · f2 ·∆4/d

K · d10.5 · δ13K ) and
X ·U = f · Ir, with probability ≥ 1− ε over the randomness of X.

Proof. Let A = BOK · {±1, 0}
d ⊂ OK, which is bounded in infinity norm by d ·δK,

symmetric and contains 3d elements. As long as m is large enough by Lemma 4.2,
there exists a short preimage to a short multiple of f ·e1 with probability 1−ε/(2r).
Namely, there exists c ∈ Am

ΣΠ , u ∈ OK with ∥u∥∞ ≤ f2/2, ∥c∥∞ ≤ 2d2δ2K and
a′ ∈ AΠ such that X · u · c = f · a′ · e1. Note that by construction ∥a′∥∞ ≤ d2δ2K
and that a′ belongs to a maximum of l = log2(N (a′)) ≤ d log(d2δ2K) different
prime ideals.

Let Ã be the set of elements of OK which are coprime with a′ of norm

bounded by R = 4 ·∆1/d
K ·d2.5 ·δ3K. One can check that R follows the hypothesis of

Lemma 4.3, and that in that case
∣∣∣Ã∣∣∣ ≥ 2d. The set Ã is then R-admissible. Then

by Lemma 4.2 there exists c̃ ∈ ÃΣΠ

m
, ũ ∈ OK with ∥ũ∥∞ ≤ f2/2, ∥c̃∥∞ ≤ 2R2

and ã′ ∈ ÃΠ , ||ã′||∞ ≤ R2 such that X · ũ c̃ = fã′ · e1 with probability 1− ε/(2r).

By construction, a′ and ã′ are coprime, then by Lemma 2.3 there exist bounded
norm α, β ∈ OK with ∥α∥∞, ∥β∥∞ ≤ R2 ·

√
d · λd(OK) such that a′α+ ã′β = 1,

and finally it holds that

X · (α · u · c+ β · ũ · c̃) = f · e1.

We name u1 := α · u · c+ β · ũ · c̃. It holds that ∥u1∥∞ ≤ 2
√
d · f2 · λd(OK) ·R4.

Running the same argument r times for all the ej and using the union bound,
we get that with probability 1− ε, we can construct U = [u1, . . . ,ur] such that

X ·U = f · Ir and ∥U∥ ≤ O(
√
md · f2 ·∆4/d

K · d10.5 · δ13K ). The choice of lower
bound on m follows from the parameters of Lemma 4.2 when we used it during
the proof. ⊓⊔

Corollary 4.2 (Cyclotomics version of Theorem 4.1). Let f > 2 and
K = Q(ζpk) be the cyclotomic number field of conductor f and degree d. Let

1 ≤ r ≤ m, ε > 0 and T = r · log(r ·d3/2 · smin(SX)). Let SX ∈ Rdr×dr be positive
definite, and X ∈ Or×m

K be a matrix with columns sampled from DOr
K,SX

and
c ∈ Om

K . There exists an absolute constant C > 2 such that for

SX ≥ max(η1/2(Or
K),
√
2πd), m ≥ C · T · log(T ) + 2 log(1/ε)

log(pk/1.8)
,
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with probability ≥ 1− ε we have

ηε(Λ
⊥(X)) = O

(
η((m−r)d)ε ·m1.5 · f2 · d16 · smin(SX)

)
.

We now use the short preimage computed in Lemma 4.4 to compute a short basis
of Λ⊥(X), and then an upper bound on the smoothing parameter.

Lemma 4.5. Let U ∈ Om×r
K such that X ·U = f · Ir, then there exists a basis

B ∈ Rdm×d(m−r) of Φ(Λ⊥(X)) such that

∥B∥ ≤
√
(m− r) d · δK · (∥U∥ · ∥X∥+ f) ,

in particular, for any ε > 0, it holds that

ηε(Λ
⊥) ≤ η((m−r) d)ε ·

√
(m− r) d · δK · (∥U∥ · ∥X∥+ f) .

Proof. One can check that the column vectors of matrix Y = f · Im −U ·X ∈
Om×m
K belong to Λ⊥(X) and that their norm is bounded by ∥U∥ · ∥X∥+ f . Since

U ·X is of rank at most r (over K), the rank of Y is at least m− r. Hence, Y
contains a free subset of size m− r generating spanK(Λ

⊥(X)). Then Lemma 2.1
implies the existence of a basis B with the corresponding norm bound. Lastly, we
get a bound on the smoothing parameter by noting that λ(m−r)d(Λ

⊥(X)) ≤ ∥B∥.
⊓⊔

4.3 Proof of Lemma 4.2

In this subsection, we fix K ⊇ Q(ζf ) be a number field of degree d containing

the cyclotomic field of conductor f , S ≥ max(
√
2πd, η1/2(Or

K)), and X ∈ Or×m
K

a matrix with columns sampled from DOr
K,S for some m ≥ 1.

It remains to prove Lemma 4.2. Without loss of generality we take i = 1. We
fix a B-admissible set A and define two set sequences, for 1 ≤ j ≤ m:

Sj =

{
j∑

i=1

ai · xi, ai ∈ A

}
, Ŝj = {s/a, s ∈ Sj , a ∈ A \ {0}}

For 1 ≤ j ≤ m we define the following events:

Winj : Two sets in
{
Ŝj , Ŝj + ζxf · e1 | x ∈ [f ]

}
have non-empty intersection,

Gainj : xj+1 /∈ Ŝj and ∥xj+1∥ ≤
√
dr · smin(S).

The following Lemma 4.6 shows that the event Winj implies the existence of a
short preimage of a multiple of e1.

Lemma 4.6. Let j ≥ 1. If Winj is true, then there exists c ∈ (AΣΠ)j, u ∈ OK
with ∥u∥∞ ≤ f2/2 and a′ ∈ AΠ such that X[1:j] · u · c = f · a′ · e1, where AΠ and
AΣΠ are defined as in Lemma 4.2.
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Proof. Since Winj is true, two cases can happen: (1) (Ŝj+ζxf ·e1)∩(Ŝj+ζyf ·e1) ̸= ∅
for some x, y ∈ [f ]; (2) Ŝj ∩ (Ŝj + ζyf · e1) ̸= ∅ for some y ∈ [f ]. We focus on
Case (1) and note that Case (2) can be treated similarly. In Case (1), there
exist a1,a2 ∈ Aj and b1, b2 ∈ A such that X · (a1/b1 − a2/b2) = (ζxf − ζyf ) · e1.
Multiplying the previous equality by b1 · b2 ·f/(ζxf − ζyf ) and applying Lemma B.4
gives the result. ⊓⊔

Lemma 4.7 ([AR16, Clm. 4.1 adapted]). There exists an absolute constant
c1 > 1 such that, for any sequence 1 ≤ i1 < . . . < ik of integers of length

k ≥ c1 · r log(r ·B · smin(S)/∆
1/(2d)
K ), if Gainil is true for l ∈ [1, k+1] then Winik

is true.

Proof. Assume that Winik is not true, we prove the statement by contradiction.
Without loss of generality, we also remove all xj for which Gainj is false, and
consider il = l for l ∈ [1, k + 1]. For all l ∈ [1, k + 1] and a ∈ A, we have that
a · xl+1 /∈ Sl, since else xl+1 ∈ Ŝl which is forbidden by Gainl. This implies that

the size of Sl is at least |A|l ≥ 2dl. Then, since the sets Ŝj are non-intersecting,

we have |Sl|+
∑

a

∣∣∣Sl + ζaf · e1
∣∣∣ ≥ (f + 1)2dl.

Furthermore, note that every element of Sl and Sl+ ζaf ·e1 has norm bounded

by 2 ·
√
rd · B · smin(S) · l. By Lemma 2.13 and the condition on S, the set

Or
K ∩ B(0, C) is of size at most 1.5 · (2 exp(π)B · l · smin(S)/∆

1/(2d)
K )rd ≤ Crd

for C = O(B · l · smin(S)/∆
1/(2d)
K ). This implies that for k large enough we have

(f + 1)2dk > Crd, and a pair of sets in
{
Sj , Sj + ζaf · e1 | a ∈ [f ]

}
must have

a non-empty intersection by the pigeonhole principle. This means that Wink
is true, and we have a contradiction. Using Lemma B.5, it can be computed
that there exists an absolute c′ > 1 such that (f + 1) · 2dk > Crd holds for any

k ≥ c′ · r log(r ·B · smin(S)/∆
1/(2d)
K ). ⊓⊔

We now show that as long as Winj is false, the event Gainj happens with high
probability.

Lemma 4.8. Let S ≥
√
2πd and j ≥ 1. It holds that Pr(Gainj | ¬Winj) ≥

1− 1.8/f .

Proof. For clarity, we omit the “| ¬Winj” for the probabilities in this proof. Note
that

Pr(¬Gainj) =
ρS(Ŝj ∪ Or

K \B(0, R))

ρS(Or
K)

≤ ρS(Ŝj)

ρS(Or
K)

+ βdr(
√
2πd),

where R =
√
drs1(S) and the inequality follows from Lemma 2.7. One can prove

that it holds that βrd(
√
2πd) ≤ 1/(10d) for any d ≥ 2, r ≥ 1. For any i ∈ [1, f ],

by Lemma 2.11 and the bound on S, we have that ρS(Ŝj + ζif e1) ≥ ρS(Ŝj)/
√
e.

Now since Winj is false, it holds that ρS(Ŝj) +
∑

i ρS(Ŝj + ζif e1) ≤ ρS(Or
K), and

then ρS(Ŝj)/ρS(Or
K) ≤ 1/(1 + f/

√
e) ≤

√
e/f . Finally, Pr(¬Gainj) ≤ 1.8/f ⊓⊔
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Lemma 4.9. Let Y1, Y2, . . . be a sequence of not necessarily independent random
Boolean variables such that for any i ≥ 1 and any {y1, . . . yi−1} ∈ {0, 1}i−1 it
holds that

Pr(Yi = 1 | Yi−1 = yi−1, . . . Y1 = y1) ≥ 1− α (2)

for some α ∈ (0, 2/3). Let T ≥ 3 be a target value. Then exists an absolute
constant c2 > 2 such that for any ε ∈ (0, 1/2) and any

m ≥ c2 · T log(T ) + 2 · log(1/ε)
log(1/α)

,

it holds that

Pr(

m∑
i=1

Yi ≤ T ) ≤ ε.

Furthermore, if we assume T ≥ 13 and α ≤ 0.1, one can choose c2 = 4.

Lemma 4.10. Let Y1, Y2, . . . be a sequence of not necessarily independent random
Boolean variables such that for any i ≥ 1 and any {y1, . . . yi−1} ∈ {0, 1}i−1 it
holds that

Pr(Yi = 1 | Yi−1 = yi−1, . . . Y1 = y1) ≥ 1− α

for some α ∈ (0, 1). Let τ ∈ {0, 1}m and |τ | its hamming weight. It holds that

Pr((Y1, . . . , Ym) = τ) ≤ αm−|τ |.

Proof. It holds that

Pr((Y1, . . . , Ym) = τ) =

m∏
i=1

Pr(Yi = τi|(Y1, . . . , Yi−1) = τ[1:i−1]),

we upper-bound each Pr(Yi = τi|(Y1, . . . , Yi−1) = τ[1:i−1]) by 1 if τi = 1, and by
α if τi = 0, giving the result. ⊓⊔

Proof (Of Lemma 4.9). By Lemma 4.10, it holds that

Pr(
m∑
i=1

Yi ≤ T ) =
∑

τ∈{0,1}m
|τ |≤T

Pr((Y1, . . . , Ym) = τ)

≤
T∑

k=0

(
m

k

)
αm−k ≤ αm−T ·

(
m

T

)
· (T + 1)

≤αm−T · e
T · (T + 1) ·mT

TT

≤7 · αm−T ·mT ,

where we used the fact that T ≤ m/2, by assumption. Now, note that

7 · αm−T ·mT ≤ ε⇔ m ≥ T +
log(1/ε) + log(7)

log(1/α)
+

T

log(1/α)
· log(m),
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which, by Lemma B.5 holds for any

m ≥ 2 ·
(
T +

log(1/ε) + log(7)

log(1/α)
+

T

log(1/α)
· log

(
T

log(1/α)

))
,

a proper analysis proves that for the range of parameters T ≥ 13 and α ≤ 0.1,
the above bound is less than

4T log(T ) +
2 log(1/ε)

log(1/α)
,

which concludes the proof. ⊓⊔

With all of these result, we can now prove Lemma 4.2.

Proof (of Lemma 4.2). Combining Lemmas 4.6, 4.7 and 4.9 with α = 1.8/f
(f ≥ 2 since ζ2 = −1 ∈ K) by Lemma 4.8 proves Lemma 4.2. ⊓⊔

5 Gaussian LHL over rings

We combine the arguments above to obtain a Gaussian Leftover Hash Lemma.

Theorem 5.1 (Gaussian LHL, Assuming GRH). Let K be a number field
of degree d ≥ 2 containing the cyclotomic field of conductor f and of smallest ideal
norm NK. Let c ∈ Om

K , SX ∈ Rdr×dr positive definite, 1 ≤ r ≤ m, 0 < ε < 2−6,

and T = TK,r,SX
= r ·log(dr ·∆1/(2d)

K ·smin(SX)). There exists an absolute constant
C > 2 such that for

SX ≥ max
( √

2πd︸ ︷︷ ︸
for full image

, 9 · r 1
d · log

(
r ·∆

1
d

K · ηε(O
r
K)
) 1

d

·∆
1
d

K · ηε(O
r
K)︸ ︷︷ ︸

for the smoothing bound

)
,

m ≥max

(
2r +

log(1/ε) + 1 + log(2d)

log(NK/1.4)︸ ︷︷ ︸
for full image

, C · T · log(T ) + 2 log(1/ε)

log(f/1.8)︸ ︷︷ ︸
for the smoothing bound

)
,

√
Σ ∈ω

(
η((m−r)d)ε ·m1.5 · d12 · δ14K · f2 ·∆4/d

K · smin(SX)
)
,

it holds

SD((X←
(
DOr

K,SX

)m
,X · DOm

K ,
√
Σ,c), (X←

(
DOr

K,SX

)m
,DOr

K,
√
Σ′,X·c)) ≤ ε′

where Σ′ = Φ̃(X) ·Σ · Φ̃(X)T, ε′ = ε
1−ε +m · (ε+ 2−dr) + ε.

Proof. Denote S ⊂ Or×m
K the set of matrices X satisfying

√
Σ ≥ ηε(Λ

⊥(X))
and X · Om

K = Or
K. Consider a fixed element X ∈ S. We verify conditions of

Lemma 2.8 for the real lattice embedding of Om
K and the Φ̃(·) embedding of X.
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For matrix Φ̃(X) as a linear map over R the set ker(Φ̃(X)) is indeed equal to
spanR(Φ(Λ

⊥(X))) and ker(Φ̃(X)) ∩ Φ(Om
K ) = Φ(Λ⊥(X)). Hence,

SD(X · DOm
K ,
√
Σ,c,DX·Om

K ,
√
Σ′,X·c) ≤

ε

1− ε
.

Lastly, we apply X · Om
K = Or

K for the support. Now for the statistical distance
between tuples E := SD((X,X · DOm

K ,
√
Σ,c), (X,DOr

K,
√
Σ′,X·c)) we have

E = EX(X · DOm
K ,
√
Σ,c,DX·Om

K ,
√
Σ′,X·c)

≤ Pr(X ∈ S) ·max
X∈S

(SD(X · DOm
K ,
√
Σ,c,DOr

K,
√
Σ′,X·c))

+ Pr(X /∈ S) ·max
X/∈S

(SD(X · DOm
K ,
√
Σ,c,DOr

K,
√
Σ′,X·c))

≤ 1 · ε

1− ε
+ (m · (ε+ 2−dr) + ε) · 1

where the first equality holds by the definition of statistical distance.

Corollary 5.1 (Prime-Power Cyclotomics version of Theorem 5.1). Let
pk > 2 a prime power and K = Q(ζpk) be the pk-cyclotomic number field of degree

d = (p−1) ·pk−1. Let 1 ≤ r ≤ m, 0 < ε < 2−6, and T = r · log(r ·d3/2 ·smin(SX)).
Let SX ∈ Rdr×dr be positive definite, and X ∈ Or×m

K be a matrix with columns
sampled from DOr

K,SX
and c ∈ Om

K . There exists an absolute constant C > 2 such
that for

SX ≥ 9 · r1+ 1
d · d3/2 · η(rd)ε · log1/d

(
(rd)3/2 · η(rd)ε

)
,

m ≥ max

(
2r +

log(1/ε) + 1 + log(2d)

log(p/1.4)
, C · T · log(T ) + 2 log(1/ε)

log(pk/1.8)

)
,

and for
√
Σ ∈ ω

(
η
((m−r)d)
ε ·m1.5 · p18k · smin(SX)

)
, Σ′ = Φ̃(X) · Σ · Φ̃(X)T it

holds

SD((X,X · DOm
K ,
√
Σ,c), (X,DOr

K,
√
Σ′,X·c)) ≤

ε

1− ε
+m · (ε+ 2−dr) + ε

6 Spherical covariance

One way to make the distribution close to a spherical Discrete Gaussian is to adapt
the covariance parameter of the input vector as in the corollary below. Besides
this, we set the centre of the distribution to c = 0 to remove the dependence on
X in the second distribution completely.

Corollary 6.1 (of Theorem 5.1). Let 1 ≤ r ≤ m, and ς > 0. Following
Lemma 2.5 and using that M = Φ̃(X) is full rank we can efficiently construct a
matrix S ∈ Rdm×dm s.t. ς2 · Idr = Φ̃(X) · S · ST · Φ̃(X)T. Letting Σ = S · ST and
c = 0 we obtain

SD((X,X · DOm
K ,
√
Σ), (X,DOr

K,ς)) ≤
ε

1− ε
+m · (ε+ 2−dr) + ε
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Furthermore, ς/smax(Φ̃(X)) ≤ smin(
√
Σ) ≤ smax(

√
Σ) ≤ ς/smin(Φ̃(X)).

We also consider a different approach for removing the dependence on X in the
case when the covariance of the input cannot be adjusted. We prove that when
the number of columns m is large enough the singular values of X ·XT are so close
that the distribution has a constant Rényi Divergence to a spherical Discrete
Gaussian. The ideas are inspired by the arguments in [AGHS13, Lemma 8]. First
we detail an adaptation of the proof of [Sil85] for continuous Gaussian matrices.
To adapt it we tighten the bounds on the convergence speed of the singular
values.

Lemma 6.1 (Continuous Gaussians. Adapted from [Sil85]). Let Z ←
Dr×m

ς for 1 ≤ r ≤ m, ς > 0 and parameters d, k ≥ 1 s.t rd ≥ 4. If m ≥
49 ·max(r, k) · (rd)2 then with probability at least 1− 4r · exp(−k) we have:

m ·
(
1− 1

rd

)
≤ s2min(Z) ≤ s2max(Z) ≤ m ·

(
1 +

1

rd

)
.

Proof. Denote the first row of Z as z0 ← Dm
ς . Define O0 ∈ Rm×m a matrix where

the first column is equal to z0/∥z0∥ and the remaining columns are a non-random
completion to an orthogonal matrix (e.g. taking the unit vectors and running the
Gram-Shmidt orthogonalisation starting from z0/∥z0∥). Then

Z ·O0 =

[
Xm 0 . . . 0

Z̃0

]
where Xm := ∥z0∥ ← χm. The distribution of the rows in Z̃0 remains independent
Gaussian. This is because O0 is orthogonal and the Gaussian Distribution is
rotationally invariant. Then we define a rotation O1 ∈ Rr×r on the right in a
similar way such that

1 0 . . . 0
0
...
0

Õ1

 · Z ·O0 =


Xm 0 . . . 0
Yr−1
...
0

Z̃1


for Yr−1 ← χr−1. Here the first row of Õ1 is a normalisation of the first column
in Z̃0 and the rest is completed to an orthogonal matrix. We repeat the algorithm
until

r−2∏
j=0

O2j+1 · Z ·
r−1∏
i=0

O2i =


Xm 0 0 . . . 0
Yr−1 Xm−1 0 . . . 0
...
0

Yr−2
...

. . .


As consequence, there exists an orthogonal transformation O ∈ Rr×r s.t.
O · Z · ZT ·OT =

X2
m XmYr−1 0 0

XmYr−1 X2
m−1 + Y 2

r−1 Xm−1Yr−2 0 0
. . . . . .

0 0 Xm−r+2Y1 X2
m−r+1 + Y 2

1


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where Xi ← χi, Yi ← χi, and the variables denoted by different letter or index
are pairwise independent. By the concentration inequalities of Lemma 2.10 and

the union bound, ∀i ∈ [m − r + 1,m + 1], j ∈ [1, r] it holds
√

i− 2
√
ik ≤

Xi ≤
√
i+ 2

√
ik + 2k and

√
j − 2

√
jk ≤ Yj ≤

√
j + 2

√
jk + 2k with overall

probability ≥ 1− 4r · exp(−k). Consider r > 1 and denote Yr = Y0 = 0. Then by
the Gershgorin circle theorem the eigen values of O · Z · ZT ·OT (and hence the
eigen values of Z · ZT) are bounded as

λmin(Z · ZT) ≥ min
i∈[0,r]

(X2
m−i + Y 2

r−i −Xm−i+1Yr−i −Xm−iYr−i−1)

λmax(Z · ZT) ≤ max
i∈[0,r]

(X2
m−i + Y 2

r−i +Xm−i+1Yr−i +Xm−iYr−i−1)

Substituting in the concentration inequalities and simplifying the expressions we
get that for m ≥ c2 ·max(r, k) · x2

λmin(Z · ZT)

m
≥ 1− 2

c · x
− 2

c2 · x2
− 2
√
5 · 1

c · x
·
√
1 +

2

c · x
+

2

c2 · x2
, (3)

λmax(Z · ZT)

m
≤ 1 +

2

c · x
+

7

c2 · x2
+ 2
√
5 · 1

c · x
·
√

1 +
2

c · x
+

2

c2 · x2
. (4)

Then for c = 7, x = rd for rd ≥ 4 we have9

Pr(1− 1

rd
≤ λmin/m ≤ λmax/m ≤ 1 +

1

rd
) ≥ 1− 4r · exp(−k).

Lastly, we consider the special case when r = 1. Then using zT · z ∼ χ2
m,

k/m ≤ 1/(7 rd)2 and Lemma 2.10 we get an even tighter bound

1− 1

7 rd
≤ 1−

√
k

m
≤ s2min(z)/m = s2max(z)/m ≤ 1 +

√
k

m
+ 2 · k

m
≤ 1 +

1

7 rd

with probability ≥ 1− 2 exp(−k).

As a side-result, we give a statement of [AGHS13, Lemma 8] with explicit
constants, in the general case of ring of integers.

Lemma 6.2 (Discrete Gaussians). Let 1 < r ≤ m be integers and k ≥ 1 s.t.
m ≥ 64 ·max(r, k) let ςx ≥ 10 · ηε(OK) for ε ∈ (0, 1/2). Let X←

(
DOr

K,ςx

)m
then

it holds that

√
m · ςx
7

≤ smin(Φ̃(X)) ≤ smax(Φ̃(X)) ≤ 2.2 ·
√
m · ςx,

each inequality holding with probability at least 1− 4rm · ε− 4rd · exp(−k) over
the randomness of X.

9 See the included SageMath script or Appendix C.3 for the corresponding calculations.
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Proof. We follow a proof similar as the one of Theorem 6.1. We work with
diagonal by block matrices of dimension dr × dm with blocks of dimension d.
For matrix M we denote Mij , i ∈ [r], j ∈ [m] the corresponding d × d block.

Let ςy := ςx/
√
96, and consider Z = Φ̃(X) +Y where X←

(
DOr

K,ςx

)
and Y is

diagonal by block with Yij ← diag
(
Dd

ςy

)
, i ∈ [r], j ∈ [m]. One can compute that

ςx · ςy/
√
ς2x + ς2y ≥ ςx/10, and then by the condition on ςx we can use Lemma 2.9

for Z. We then have SD(Zij , diag(Dd√
ς2x+ς2y

)) ≤ 4ε.

We analyse the singular values of Z. First we multiply by unitary matrices
on the right and on the left to reorder the rows and columns and obtain a
block-diagonal matrix. Now the on the diagonal we have matrices we denote
Zi sampled independently from Zi ← Dr×m√

ς2x+ς2y
and similarly Yi ← Dr×m

ςy for

i ∈ [d]. We can use Eqs. (3) and (4) of the proof of Lemma 6.1 with c · x = 8
(which matches the condition on m) to obtain, for any i ∈ [d]:

smax(Yi)
2 ≤ 2 ·m · ς2y ,

smin(Zi)
2 ≥ m

12
· (ς2x + ς2y ),

smax(Zi)
2 ≤ 2 ·m · (ς2x + ς2y )

with probability ≥ 1− 4rd exp(−k). Now, one can compute that with our choice
of ςy, it holds that smax(Yi)/smin(Zi) ≤ 1/2. Then using Lemma 2.4 and the

fact that Φ̃(X) = Z−Y, we get that for any i ∈ [d]:

smin(Xi) ≥
1

2
· smin(Zi) ≥

√
m

2
√
12
·
√

ς2x + ς2y ≥
√
m · ςx
7

,

smax(Xi) ≤
3

2
· smax(Zi) ≤ 2.2 ·

√
m · ςx,

for any i ∈ [d] with probability ≥ 1− 4rm · ε− 4rd exp(−k). The union bound
give the desired result. ⊓⊔

Now we provide an adaptation of [PS21, Lemma 2.3] on the Rényi Divergence
between discrete Gaussian distributions with different covariance parameters. We
provide the proof for completeness.

Lemma 6.3. Let Λ be an n-dimensional lattice ε ∈ (0, 1) and Σ0,Σ1 ∈ Rn×n be
positive definite s.t.

√
Σi ≥ ηε(Λ), i = 0, 1 and smax(

√
Σ0) ≤ smin(

√
Σ1). Then

RD(DΛ,
√
Σ0

;DΛ,
√
Σ1

) ≤ 1 + ε

1− ε
· det(

√
Σ1)

det(
√
Σ0)
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Proof. By definition

RD(DΛ,
√
Σ0

;DΛ,
√
Σ1

) =
∑
s∈Λ

Pr(s← DΛ,
√
Σ0

) ·
Pr(s← DΛ,

√
Σ0

)

Pr(s← DΛ,
√
Σ1

)

= Es←DΛ,
√

Σ0

(
ρ√Σ0

(s)

ρ√Σ0
(Λ)
·
ρ√Σ1

(Λ)

ρ√Σ1
(s)

)
=

ρ√Σ1
(Λ)

ρ√Σ0
(Λ)
· Es←DΛ,

√
Σ0

(
ρ√Σ0

(s)

ρ√Σ1
(s)

)

≤ 1 + ε

1− ε
· det(

√
Σ1)

det(
√
Σ0)

· Es←DΛ,
√

Σ0
exp

(
π ·
(∥∥∥√Σ−11 · s

∥∥∥2 − ∥∥∥√Σ−10 · s
∥∥∥2))

where the last transition follows from Lemma 2.12. Denote s̃ :=
√
Σ
−1
0 · s, then∥∥∥√Σ−11 · s

∥∥∥2 − ∥∥∥√Σ−10 · s
∥∥∥2 =

∥∥∥√Σ−11 ·
√
Σ0 · s̃

∥∥∥2 − ∥s̃∥2
≤

(
s2max(

√
Σ0)

s2min(
√
Σ1)

− 1

)
· ∥s̃∥2 ≤ 0

since smax(
√
Σ0) ≤ smin(

√
Σ1). Combining the above we get the statement. ⊓⊔

Finally, we prove the target statement. On high level, we first add continuous
noise to the discrete Gaussian matrix Φ̃(X) to make it approach a continuous
Gaussian sample. Then we apply the bounds from Lemma 6.1 to the continuous
matrices. Lastly, we obtain bounds on the singular values of their difference equal
to Φ(X) and use Lemma 6.3.

Theorem 6.1. Let 1 < r ≤ m be integers and k ≥ 1 s.t. m ≥ 49·max(r, k)·(rd)2,
rd ≥ 4 let ςx ≥ 2rd · ηε(OK) for ε ∈ (0, 1/2). Let X ←

(
DOr

K,ςx

)m
then for

ς =
√
m · (ς2x + 2 · η2ε(OK)) ·

(
1− 1

rd

)3/2
we have

RD(DOr
K,ς ;DOr

K,
√

Φ̃(X)·Φ̃(X)T
) ≤ 4 · exp(3).

with probability at least 1− 4rm · ε− 4rd · exp(−k) over the randomness of X.

Proof. In the proof we work with diagonal by block matrices of dimension dr×dm
with blocks of dimension d. For matrix M we denote Mij , i ∈ [r], j ∈ [m] the

corresponding d× d block. Consider Z = Φ̃(X) +Y where X←
(
DOr

K,ςx

)
and Y

is diagonal by block with Yij ← diag
(
Dd

ςy

)
, i ∈ [r], j ∈ [m]. By Lemma 2.9 for

Z we have SD(Zij , diag(Dd√
ς2x+ς2y

)) ≤ 4ε for ςy :=
√
2 · ηε(OK).

We analyse the singular values of Z. First we multiply by unitary matrices
on the right and on the left to reorder the rows and columns and obtain a
block-diagonal matrix. Now the on the diagonal we have matrices we denote
Zi sampled independently from Zi ← Dr×m√

ς2x+ς2y
and similarly Yi ← Dr×m

ςy for
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i ∈ [d]. By Lemma 6.1 for i ∈ [d]

m · (ς2x + ς2y ) ·
(
1− 1

rd

)
≤ s2min(Zi) ≤ s2max(Zi) ≤ m · (ς2x + ς2y ) ·

(
1 +

1

rd

)
m · ς2y ·

(
1− 1

rd

)
≤ s2min(Yi) ≤ s2max(Yi) ≤ m · ς2y ·

(
1 +

1

rd

)
with probability at least 1− 8dr · exp(−k). Note that Xi = Zi −Yi and one can
verify that smax(Yi) ≤ δ · smin(Zi) for ςx ≥ ςy ·

√
2 · rd, δ = 1/rd and rd ≥ 3, see

below.

m · ς2y ·
(
1 +

1

rd

)
≤ δ2 ·m · (ς2x + ς2y ) ·

(
1− 1

rd

)
ς2x

2 · (rd)2
·
(
1 +

1

rd

)
≤ δ2 · ς2x ·

(
1− 1

rd

)
1

2 · (rd)2
·
(
1 +

1

rd

)
≤ 1

(rd)2
·
(
1− 1

rd

)
1 +

1

rd
≤ 2− 2

rd
3

rd
≤ 1

Then using Lemma 2.4 we get

m · (ς2x + ς2y ) ·
(
1− 1

rd

)
· (1− δ)

2 ≤ s2min(Xi)

m · (ς2x + 2 · η2ε(OK)) ·
(
1− 1

rd

)3

≤ s2min(Xi)

and

s2max(Xi) ≤ m · (ς2x + ς2y ) ·
(
1 +

1

rd

)
· (1 + δ)

2

s2max(Xi) ≤ m · (ς2x + 2 · η2ε(OK)) ·
(
1 +

1

rd

)3

Then for ς =
√
m · (ς2x + 2 · η2ε(OK)) ·

(
1− 1

rd

)3/2
by Lemma 6.3

RD(DOr
K,ς ;DOr

K,
√

Φ̃(X)·Φ̃(X)T
) ≤ 1 + ε

1− ε
·
(
1 + 1

rd

)3rd/2(
1− 1

rd

)3rd/2
≤ 1 + ε

1− ε
· exp(3/2)

exp(−3/2) ·
(
1− 1

rd

) ≤ 4 exp(3)

with probability at least 1− 4rm · ε− 4rd · exp(−k) over the randomness of X.

The last inequality used exp(x) · (1− x2

n ) ≤ (1 + x
n )

n ≤ exp(x) for n ≥ 1, |x| ≤ n
and also ε ≤ 1/2, rd ≥ 4.

Remark 6.1. We expect an equivalent statement for negl(λ) statistical distance
requires a number of columns exponential in rd. We leave this as an open problem.
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HintTGm,k(ς1, ς2)→ (X ∈ Ok×(m+k)
K ,U ∈ O(m+k)×(m+k)

K )

1 : X1 ← Dm
Ok

K,ς1

2 : Σ :=
√
S · ST s.t. ς22 · Idr = Φ̃(X1) · S · ST · Φ̃(X1)

T from Cor. 6.1

3 : ∀ : i ∈ [k] : ri ← DOm
K ,

√
Σ. Let R := (r1, . . . , rk)

4 : X2 := X1 ·R+ Ik ∈ Ok×k
K

5 : U :=

[
−R −Im −RX1

Ik X1

]
∈ O(m+k)×(m+k)

K

6 : return ((X1,X2),U)

Fig. 1. HintTG procedure.

7 Hardness of k-SIS and k-LWE problems

In this section we formalise a major application of our Gaussian LHL result:
a reduction from the SIS problem to the k-SIS problem in the module setting.
In order to be coherent with prior work’s notation, in this section if K is a
cyclotomic number field of degree d and conductor f , and we denote R = OK and
Rq = R/(q ·R) for any q ≥ 2. Based on our new Gaussian LHL (Theorem 5.1), we
obtain the following generalisation and adaption of [LPSS14, Theorem 17 (eprint)],
which is the core of our SIS-to-k-SIS reduction over modules.

Lemma 7.1. Let K be a number field of degree d ≥ 2 containing the cy-
clotomic field of conductor f . Let k = r ≥ 1, m ≥ 64max(λ/ log(dk), k),
0 < ε ≤ negl(λ), d · k ≥ λ and ς1 · I = SX ∈ Rdk×dk follow constraints of
Theorem 5.1 and satisfy ς1 ≥ 10 · ηϵ(OK). Additionally, let ς2 ≥ ς1d

√
mk ·

ω
(
η
((m−r)d)
ε ·m1.5 · d12 · δ14K · f2 ·∆4/d

K · ς1
)
. Denote by ei ∈ Ok

K the i-th unit

vector. Then there exists a PPT algorithm HintTGm,k (Fig. 1) which, on input

parameters (ς1, ς2), outputs ((X1,X2),U) ∈ Ok×(m+k)
K ×O(m+k)×(m+k)

K satisfying

1. SD
(
(X1,X2), ((DOk

K,ς1)
m,
∏

i∈[k]DOk
K,ς2,ei

)
)
≤ negl(λ).

2. We have det(U) = 1, and letting Ū ∈ O(m+k)×m
K be the last m columns of

U, then (X1,X2) · Ū = 0k×m.
3. Lastly, it holds that

∥∥Ū∥∥ = Ω(ς2 · d ·
√
m) with overwhelming probability in λ.

Proof. We generate required values using HintTGm,k described in Fig. 1. We show
that the output from HintTG satisfies all Items 1 to 3 in the lemma.

For Item 1 applying Theorem 5.1 and Cor. 6.1 k times over all X1 ·ri together
with the union bound, we have

SD
(
(X1,X1 ·R), ((DOk

K,ς1)
m, (DOk

K,ς2)
k)
)
≤ negl(λ).

The only difference between X1 ·R and the output X2 = (x2,1, . . . ,x2,k) from
HintTG is that each of the i-th column x2,i of X2 is offset by ei ∈ Ok

K, the
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i-th unit vector, respectively. The claim follows by noting that for any y ∈ Ok
K

following Dk
OK,ς2

and any fixed ei ∈ Ok
K, it holds that y + ei follows DOk

K,ς2,ei
.

For Item 2, observe that it holds

U =

(
Im −R

Ik

)
·
(
−Im

Ik X1

)
.

Noting that both matrices are triangular with diagonal entries ±1 implies
det(U) = 1. For the kernel condition we note

(X1,X2) = (X1,X1R+ Ik) = (X1, Ik) ·
(
Im R

Ik

)
,

thus

(X1,X2) ·U = (X1, Ik) ·
(
−Im

Ik X1

)
= (Ik,0k×m),

implying (X1,X2) · Ū = 0k×m.

Finally, for Item 3, we bound the norm of Ū, obtaining∥∥Ū∥∥ =

∥∥∥∥(−Im −RX1

−X1

)∥∥∥∥
≤ (1 + ∥R∥2 · ∥X1∥2 + ∥X1∥2)1/2

≤ 1 + (∥R∥+ 1) · ∥X1∥

≤ 1 + (ς2 ·
√
d ·m/smin(Φ̃(X1)) + 1) · ς1 ·

√
d ·m

≤ 1 + (ς2 ·
√
d ·m · 7/(

√
m · ς1) + 1) · ς1 ·

√
d ·m

= Ω(ς2 · d ·
√
m)

with probability overwhelming in d · k ≥ λ. In the above, the third ≤ is by
Gaussian tail bound together with the bound on smax(

√
Σ) from Cor. 6.1, the

fourth ≤ by Lemma 6.2, and the last = because ς2 · d dominates ς1 ·
√
d. ⊓⊔

In the rest, we focus on the case where K is a cyclotomic field. From Lemma 7.1,
we have the following generalisation of [LPSS14, Lemma 19 (eprint)] without the
restriction of OK = Z.

The original proof relies on [BF11, Lemma 4.5 and Theorem 4.3] which we
replace by its generalisation to cyclotomic rings in Lemmas 2.14 and 2.15.

Lemma 7.2 (Generalisation of [LPSS14, Lemma 19 (eprint)]). Let
K be a cyclotomic field of degree d ≥ 2 with conductor f . Let k = r ≥ 1,
m ≥ 64max(λ/ log(dk), k), 0 < ε ≤ negl(λ), and ς1 · I = SX follow constraints
of Theorem 5.1 and satisfy ς1 ≥ 10 · ηϵ(OK). Additionally, let ς2 ≥ ς1d

√
mk ·

ω
(
η
((m−r)d)
ε ·m1.5 · d12 · δ14K · f2 ·∆4/d

K · ς1
)
. Denote

√
Σ := diag(ς1Im, ς2Ik), and

suppose the following holds 10:

10 The additional constraints are such that we can apply [ALLW25, Lemma 29 and
Theorem 9 (eprint)] in the proof.
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– q is an unramified prime that splits into g ideals in R;
– 1 ≤ n ≤ m, d · (m− k) ≥ Ω(λ), and ng/qd(m−n+1)/g ≤ negl(λ);
– letting ηA ≥ 8 d

√
m · qn/m+2/(d·m), then there exists ϵ ≤ negl(λ), a ≥ 1, such

that it holds max
{
ηA, 2

√
d · (akqn)1/(m−k)

}
≤ ς1 and ς2 ≤ min

{
q1/g/

√
m, a · ς1

}
.

Denote by ei ∈ R(m+k) the (m + i)-th unit vector. Let HintTGm,k be the PPT
algorithm in Fig. 1. Then, the following distributions are statistically close in λ:
(
B,XT

)
∣∣∣∣∣∣∣∣∣∣
A← Rn×m

q

(X,U)← HintTGm,k(ς1, ς2)

ŪT := U · (0(m+k)×k, Im)

B := A · Ū mod q

 ≈s

(B,X)

∣∣∣∣∣∣∣
B←Rn×(m+k)

q

X←
∏
i∈[k]

DΛ⊥
q (B),

√
Σ,ei

.

Proof. We consider a sequence of hybrid distributions.

H0: The RHS distribution in the statement above.
H1: We first sample X ←

∏
i∈[k]DRm+k,

√
Σ,ei

, then sample B ← Rn×(m+k)
q

subject to B ·X = 0 mod q.
H2: Same as H1, except we sample X via (XT,U)← HintTGm,k(ς1, ς2).
H3: Same as H2, except that we sample A← Rn×m

q and set B := A · Ū mod q.

It holds RHS ≈s H1 by Lemma 2.14. Then it holds H1 ≈s H2 by Lemma 7.1 item
1. In the rest we show H2 ≈s H3, which completes the proof since H3 ≡ LHS.

By Lemma 2.15, the columns of X sampled in H0 are Rq-linearly independent
with overwhelming probability in λ. In both H2 and H3, the sampling of (XT =
(X1,X2),U) is identical. Since we have shown RHS ≈s H2, we have that columns
of X from H2 and H3 are also Rq-linearly independent with overwhelming
probability in λ. Conditioned on the latter, we argue that the distribution of B
in H2 and H3 are identical.

Consider an arbitrary sample (X,U) whereX isRq-injective. In H2, the matrix

B is sampled uniformly from S :=
{
M ∈ Rn×(m+k)

q : M ·X = 0n×k mod q
}
.

Since X is injective, we have |S| = qdn(m+k)/qdnk = qdnm. Next, observe that
for Ū in H3 we have Ū ·X = 0m×k by Lemma 7.1 Item 2. Therefore, for any
A ∈ Rn×m

q it holds A ·Ū ·X = 0m×k mod q, implying Rn×m
q ·Ū ⊆ S. Further, by

Lemma 7.1 Item 2, det(U) = 1, thus (right-multiplication by)U is a bijective map,
and (right-multiplication by) Ū is injective. Thus, |Rn×m

q · Ū| = |Rn×m
q | = qdnm.

Therefore, Rn×m
q · Ū = S, and the two ways of sampling B are the same. This

implies H2 ≈s H3 concluding the proof. ⊓⊔

For a random matrix A and k Gaussian samples (xi)i∈[k] from Λ⊥q (A), the k-SIS
problem asks to find a short non-zero u which is not in the K-span of (xi)i∈[k]
and s.t. A ·u = 0 mod q. See Definition 2.3 for a formal definition. The following
theorem provides a reduction from M-SIS to k-M-SIS.

Theorem 7.1 (SIS-to-k-SIS reduction over cyclotomic rings). Let K be a
cyclotomic field of degree d ≥ 2 with conductor f . Take the parameters k, n,m, q ∈
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N, 0 < ε ≤ negl(λ), ς1 > 0,
√
Σ ∈ Rd(m+k)×d(m+k) specified by Lemma 7.2.

Further suppose that ς2, ς1 ≥ 8d
√
m · qn/m+2/(d·m).

Let β1 > 0 and β0 ≥ Ω(ς2 · d ·
√
m) · β1. Denote params0 = (OK, q, n,m, β0),

params1 = (OK, q, n,m + k, k,
√
Σ, β1). For any PPT adversary B, there is a

PPT adversary A such that

Adv
SISparams0

A (λ) ≥ (Adv
k-SISparams1

B (λ))2/O(1)− negl(λ).

Remark 7.1. Firstly, here we consider the hints with simple covariance matrices,
but this approach extends directly to

√
Σ = diag(SX1,SX2). Secondly, the

constant 64 in m ≥ 64max(λ/ log(dk), k) can be reduced depending on the
parametrisation of the problem. For example, we can get a suitable singular value
lower bound for λ = 128, k = 4λ, m = 10max(λ/ log(dk), k). We leave more
specific parameter settings for the applications.

Proof. Throughout the proof we denote by R = OK and Rq = R/qR. We
consider an intermediate search problem, which asks a PPT algorithm B to solve
Shift-k-SIS, defined below:

Shift-k-SISB(1
λ)

B← Rn×(m+k)
q ; X← (

∏
i∈[k]DΛ⊥

q (B),
√
Σ,ei

)

u← B(B,X)

return (B · u = 0 mod q) ∧ (∥u∥ ≤ β1) ∧ (u /∈ K- span(X))

The only difference between Shift-k-SIS and k-SISparams1 is the Gaussian parame-
ters of X, where in Shift-k-SIS the i-th preimage is offset by the i-th unit vector
ei. The theorem follows from combining Lemmas 7.3 and 7.4 below.

Lemma 7.3. Given the parameter constrains of Theorem 7.1, for any PPT

algorithm B, it holds AdvShift-k-SISB (λ) ≥ (Adv
k-SISparams1

B (λ))2/O(1)− negl(λ).

Proof. We define a sequence of hybrids:

H0: Identical to the k-SISparams1 experiment. We denote the problem instance as

(A,X) ∈ Rn×(m+k)
q ×R(m+k)×k.

H1: Same as H0, except that we sample A← Rn×(m+k)
q subject to ηϵ(Λ

⊥
q (A)) ≤

8d
√
m · qn/m+2/(d·m) for some ϵ ≤ 2−2k.

H2: Same as H1, except we shift the distribution X ←
∏

i∈[k]DΛ⊥
q (A),

√
Σ to

X←
∏

i∈[k]DΛ⊥
q (A),

√
Σ,ei

.

H3: Same as H2, except that we sample A← Rn×(m+k)
q without the constraint

on ηϵ(Λ
⊥
q (A)), i.e. we undo the change introduced in H1. Note that H3 is

identical to Shift-k-SIS.

Let B be a PPT solver against H0 = k-SISparams1 with advantage Advk-SISB (λ) ∈
poly(λ). We claim:
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1. B solves H1 with advantage δ1 ≥ AdvSISB (λ)− 2−λ.
2. B solves H2 with advantage δ2 ≥ δ21/O(1).
3. B solves H3 = Shift-k-SIS with advantage δ3 ≥ δ2 − 2−λ.

Items 1 and 3 hold by Lemma 2.16, which says that the probability of ηϵ(Λ
⊥
q (A)) ≤

8d
√
m · qn/m+2/(d·m) for any ϵ ≤ 2−2k is at least 1− 2−Ω(dm) ≥ 1− 2−λ. In the

rest we argue that Item 2 holds, which concludes the proof.

We notice that the Rényi divergence between the distributions P := k-SISparams1
and Q := Shift-k-SIS is identical to the one between the distributions of X in H1

and H2. Thus we use Lemma 2.18 to obtain R(P∥Q) ≤ 5 exp
(

2π·dk
smin(

√
Σ)2

)
∈ O(1).

Note that the conditions required by Lemma 2.18 are satisfied since, for any
ϵ ≤ 2−2k, we have smin(

√
Σ) ≥ 8d

√
m · qn/m+2/(d·m) ≥ ηϵ(Λ

⊥
q (A)) in H2, where

the first inequality is by design of H1. From here, Item 2 follows from Eq. (1). ⊓⊔

Lemma 7.4. Following the parameter constraints of Theorem 7.1, for any

PPT adversary B, there is a PPT adversary A such that Adv
SISparams0

A (λ) ≥
AdvShift-k-SISB (λ)− negl(λ).

Proof. We construct the PPT algorithm A. On input a SISparams0 instance A, let
A proceed as follows:

Sample (XT,U)← HintTGm,k(ς1, ς2) using HintTGm,k from Fig. 1.

Let ŪT ∈ R(m+k)×m be the last m columns of U and B := A · Ū mod q.

Send (B,X) to B, and receive a vector u from B.
Return u∗ := Ū · u.

By Lemma 7.2, the distribution of (B,X) is statistically close in λ to that from
Shift-k-SIS. It remains to show that u∗ returned by A is a SIS solution for A.
Suppose that u returned by B is a valid solution for Shift-k-SIS, meaning that
B · u = 0 mod q, 0 < ∥u∥ ≤ β1, and u /∈ K- span(X). Then, we have

A · u∗ = A · Ū · u = B · u = 0 mod q.

Moreover, Ū·X = 0 by Lemma 7.1 Item 2, and X is Rq-linearly independent with
overwhelming probability by Lemma 2.15. Conditioned on the latter, X is an Rq-
basis of the (right-)kernel of Ū, and thus Ū ·u = 0 would imply u ∈ Rq- span(X),
therefore also u ∈ K- span(X), a contradiction. We thus conclude u∗ = Ū · u ̸= 0
with overwhelming probability. Finally, the norm of u∗ is bounded by

∥u∗∥ ≤
∥∥Ū∥∥ · ∥u∥ ≤ Ω(ς2 · d ·

√
m) · β1 ≤ β0

with overwhelming probability, where the second inequality follows from Lemma 7.1
Item 3. Putting everything together, we conclude that u∗ returned by A is a SIS
solution for SISparams0 with overwhelming probability. ⊓⊔

⊓⊔
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LWE to k-LWE reduction over cyclotomic rings. Analogous to the above, using
Theorem 5.1, we obtain a reduction from the LWE problem to the k-LWE problem
over general cyclotomic rings. The reduction is similar to the above, we provide
a sketch and refer to [LPSS14] for the details in the special case of OK = Z.

To recall, in the k-LWE problem (formal definition given in Definition 2.4),

an adversary is given as challenge instance (B,X, c), where B ← Rn×(m+k)
q

is uniform, X ∈ R(m+k)×k are Gaussian preimages satisfying BX = 0 mod q,
and it is asked to distinguish whether c ∈ Rm+k is an LWE sample, i.e. cT =
sTB + eT mod q for some secret s and error e, or c = d + e mod q where d is
a random sample over {d : dTX = 0 mod q}. In the LWE to k-LWE reduction,
given an LWE instance (A, ĉ), we simulate B,X using Lemma 7.2, in the same
way as in the reduction in Theorem 7.1. It remains to simulate the LWE sample c,
for which we let cT := ĉT · Ū+ ē mod q for some freshly sampled error ē ∈ Rm+k.
By picking the Gaussian parameters of ē appropriately and appealing to standard
Gaussian convolution lemmas, we can arrive at that, if ĉT = sTA+ êT mod q then
cT = (sTA+ êT) · Ū+ ē ≈ sTB+ e mod q for e of the desired shape (independent
of Ū), else if ĉ is uniformly random then cT ≈ d+ e mod q.
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A Numerical experiments on Gaussian matrix’s kernels

Fig. 2. Output of Appendix C.2 for constant conductor and varying rank.
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Fig. 3. Output of Appendix C.2 for constant rank and varying conductor.

In order to support our claim of the introduction that the bounds of Theo-
rem 4.1 are very loose, we propose a sagemath program in Appendix C.2 (and as
an attachment to this pdf). This program takes as input:

– f the conductor of a cyclotomic field;
– r a rank;
– m a width;
– β a block factor;
– ς a Gaussian parameter;
– num samples an integer.

It then do num samples times the following:

1. Sample X← Dr×m
OK,ς ;

2. Compute X′ ∈ Zrd×md the coefficient embedding of X with the power-basis;
3. Compute B ∈ Z(m−r)d×rd a basis of Λ⊥(X′);
4. Compute B′ ∈ Z(m−r)d×rd the BKZ reduction of B with block-size β · (m−

r) · d;
5. Compute the canonical embedding of each column of B′ and return the

maximal infinite norm.
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The algorithm then output the quantils of the num samples experiments (in Figs. 2
and 3 we give only the maximum). We could only test it for small values of m, r
and f , but we give some plot in Figs. 2 and 3, where we take β = 0.1, ς = 2

√
r · d

and num samples = 500. We do not claim that those figures indicate anything
for values of f,m and r relevant for cryptographic purposes. We included them
as an indicator that more work is required to refine the bound of Lemma 4.4.

B Miscellaneous results

Lemma B.1. For any integer N ≥ 2, the number of prime ideals dividing N is
at most d · log2(N).

Proof. If p is a prime ideal dividing N , then it must be above a integral prime
dividing N . Since prime numbers split in at most d prime ideals, and that the
number of prime integer dividing a number N is always less than log2(N), the
result follows. ⊓⊔

Lemma B.2. Let Σ = SST − ς2I with S ∈ Rdr×dr ≥ x · ςI for some x ≥ 1. Let
Σ′ = (Σ−1 + ς−2I). Then Σ′ ≥ ς2 ·

(
1− 1/x2

)
I.

Proof. By definition, Σ is diagonalisable with eigenvalues ≥ (x2 − 1) · ς2. The
eigenvalues of Σ′ are exactly the (s−1 + ς−2)−1 where the s are the eigenvalues
of Σ. We then have, for every s ≥ (x2 − 1) · ς2:

1
1
s + 1

ς2

≥ ς2

1
x2−1 + 1

= ς2 ·
(
1− 1

x2

)
.

⊓⊔

Lemma B.3. Let K = Q(f) be the cyclotomic number field of conductor f ,
degree d and discriminant ∆K. It holds that

|∆K|1/d ≤ d.

Proof. Since for any f = f1 · f2 with gcd(f1, f2) = 1 it holds that∣∣∆Q(ζf )

∣∣1/ϕ(f) = ∣∣∣∆Q(ζf1 )

∣∣∣1/ϕ(f1) · ∣∣∣∆Q(ζf2 )

∣∣∣1/ϕ(f2),
and ϕ(f) = ϕ(f1) · ϕ(f2), it suffices to prove the lemma for f = pk. In that case,

it holds that d = pk−1(p− 1) and that |∆K| = pp
k−1(pk−k−1) = pd·(pk−k−1)/(p−1).

Now we compute

logp(|∆K|
1/d

/d) =
pk − k − 1

p− 1
−
(
k − 1 + logp(p− 1)

)
=

p− 2

p− 1
− logp(p− 1) = 1− 1

p− 1
− logp(p− 1).

It can be computed that the function f(x) = 1− 1/(x− 1)− log(x− 1)/ log(x)
is ≤ 0 for x ≥ 2, implying the result. ⊓⊔
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Lemma B.4 ([KLNO24, Lemma 2]). For any f ≥ 4 and number field K
containing a f th root of unity ζf , and a ∈ Z/fZ \ {0}, it holds that (1− ζaf ) |f
and

∥∥∥f/(1− ζaf )
∥∥∥
∞
≤ f2/2.

Lemma B.5. Let A,B ≥ 0, then for any x ≥ 2(A + B log(B)), it holds that
x ≥ A+B · log(x).

C Source code

The Python source code files are available as attachments to this PDF.

C.1 Approximate the ζ function

import numpy as np

from sage.all import primes , mod , exp , RR, euler_phi , ln

def find_splitting(p, n):
"""
Return (N, g), g being the number of prime above p in the nth
cyclotomic , and N their norm https :// math.stackexchange.com/a/1666456
(Proposition 10.3 in Neukirch - Algebraic Number Theory)
"""
k = 0
d = n

while d % p == 0:
k += 1
d /= p

if d == 1:
return (p, 1)

r = mod(p, d).multiplicative_order ()
return (p**r, euler_phi(n) / (euler_phi(p**k) * r))

def find_approx_zeta_prime_cyclo(n, eps):
"""
Return ‘(a, b)‘ such that the Prime zeta function of the cyclotomic
field of conductor ‘n‘ is approximately equal to ‘b · a^x‘.

:param n:
:param eps: a precision parameter.

EXAMPLE ::

sage: n = 2**16 + 1
sage: a, b = find_approx_zeta_prime_cyclo(n, 1e-100)
sage: n, euler_phi(n), a, b
(65537 , 65536, 0.0000152585561077570 , 1.00000011433444)

"""
L = [find_splitting(p, n) for p in primes(1, n + 1)]
L = [(N, a) for (N, a) in L if N < 1 / eps]

def approx_zeta_prime(x):
return sum([RR(a / N**x) for (N, a) in L])

X = list(range(2, 20)) # No particular reason for the choice of 20
Y1 = [approx_zeta_prime(x) for x in X]
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Y = [float(ln(y)) for y in Y1 if y != 0]
if len(Y) == 0:

return (None , None)

X = X[: len(Y)]
a, b = np.polyfit(X, Y, 1)
return RR(exp(a)), RR(exp(b))

C.2 Compute the basis size of the kernel of random Gaussian
matrices

from sys import argv
from sage.all import vector , RDF , matrix , ZZ , CyclotomicField
from sage.interfaces.r import r as r_stats

from sage.stats.distributions.discrete_gaussian_lattice import (
DiscreteGaussianDistributionLatticeSampler as DGSL ,

)

import multiprocessing
import argparse

def nf_element_to_rd_vector(x, places):
"""
Compute the canonical embedding of x.

(separating real and imaginary part for complex embeddings)

:param x:
:param places:

"""
cc_elts = [f(x) for f in places]
rr_elts = []
for z in cc_elts:

rr_elts.append(z.real())
rr_elts.append(z.imag())

return vector(rr_elts)

def sample_gaussian_element(DGaussian , basis_canonical_emb , basis_roi):
"""
TODO describe function

:param DGaussian:
:param basis_canonical_emb:
:param basis_roi:
:returns:

"""
d = len(basis_roi)
coords = vector(RDF , DGaussian () * basis_canonical_emb.inverse ())
coords = vector ([x.round () for x in coords ])
return sum([ coords[i] * basis_roi[i] for i in range(d)])

def rotation_matrix(x, OK , basis_roi):
"""
Return the multiplication matrix of x in coordinate embedding.

:param x:
:param OK:
:param basis_roi:

"""
return matrix ([list(OK.coordinates(b * x)) for b in basis_roi ])
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def ok_matrix_to_rotation_matrix(M, OK, basis_roi):
"""
Return a ZZ-rotation matrix from an OK matrix.

:param M:
:param OK:
:param basis_roi:

"""
L = [[ rotation_matrix(x, OK , basis_roi) for x in r] for r in M.rows()]
return matrix.block(ZZ, L)

def infinity_norm_elt(x, places):
"""
Return the infinite norm in canonical embedding of x

:param x:
:param places:

"""
return max([abs(f(x)) for f in places ])

def infinity_norm_matrix(M, places):
"""
Return the maximum infinite norm (in canonical embedding) of all

↪→ coefficients of M.

:param M:
:param places:

"""
return max([ infinity_norm_elt(x, places) for x in M.coefficients ()])

def print_result(f, d, m, r, beta , out):
"""
Compute and print the quartiles of the output of run_batch

:param f:
:param d:
:param m:
:param r:
:param beta:
:param out:

"""
stats = dict(

zip(
(Q := [0, 1 / 4, 1 / 2, 3 / 4, 1]),
r_stats.quantile(out , Q)._sage_ ()["DATA"],

)
)
print(

f"f={f} d={d} r={r} m={m} (dim {(m-r)*d} kernel , block -size {int((m-r
↪→ )*d*beta)})"

"\n"
f"{stats [0]}, {stats [1/4]} , {stats [1/2]} , {stats [3/4]} , {stats [1]}"
"\n"

)

class Worker:
"""
This worker is used for parallel computing.
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It samples a Gaussian matrix of size r*m with parameter sigma in OK and
compute a beta -BKZ -reduced basis of its kernel and returns the infinity

↪→ norm
of this basis.
"""

def __init__(
self , r, m, sigma , OK, basis_canonical_emb , basis_roi , places ,

↪→ block_size
):

"""
TODO describe function

:param r:
:param m:
:param sigma:
:param OK:
:param basis_canonical_emb:
:param basis_roi:
:param places:
:param block_size:
:returns:

"""
self.r = r
self.m = m
self.basis_canonical_emb = basis_canonical_emb
self.basis_roi = basis_roi
self.block_size = block_size
self.places = places
self.OK = OK
self.sigma = sigma

def __call__(self , _):
"""
TODO describe function

"""
DGaussian = DGSL(self.basis_canonical_emb , self.sigma)

# Sample a r*m matrix from the Gaussian distribution
X = matrix(

[
[

sample_gaussian_element(
DGaussian , self.basis_canonical_emb , self.basis_roi

)
for _ in range(self.r)

]
for _ in range(self.m)

]
)
# Make it into a ZZ -matrix to run BKZ
coef_X = ok_matrix_to_rotation_matrix(X, self.OK, self.basis_roi)

basis_kernel = coef_X.kernel ().matrix ()
# If there is no kernel , return 0 (this means that m should be chosen

↪→ larger)
if basis_kernel.nrows() == 0:

return 0

# Run BKZ on the kernel basis
small_basis_kernel = basis_kernel.BKZ(block_size=self.block_size)
return infinity_norm_matrix(small_basis_kernel , self.places)

def run_batch(
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r,
m,
sigma ,
beta ,
OK,
basis_canonical_emb ,
basis_roi ,
places ,
num_samples ,
num_workers ,

):
"""
Runs num_samples Workers in parallel using num_workers threads

:param r:
:param m:
:param sigma:
:param beta:
:param OK:
:param basis_canonical_emb:
:param basis_roi:
:param places:
:param num_samples:
:param num_workers:

"""
block_size = max(1, int((m - r) * OK.degree () * beta))
worker = Worker(r, m, sigma , OK, basis_canonical_emb , basis_roi , places ,

↪→ block_size)
with multiprocessing.Pool(processes=num_workers) as pool:

results = pool.map(worker , range(1, num_samples))
return sorted(results)

def fixed_mode(f, r, m, sigma , beta , num_samples , num_workers):
"""
Compute stats on the size of the kernel of Gaussian matrices with fixed
rank r and number field QQ(zeta_f).

:param f:
:param r:
:param m:
:param sigma:
:param beta:
:param num_samples:
:param num_workers:
"""
K, zeta = CyclotomicField(f, "zeta").objgen ()
d = K.degree ()
OK = K.ring_of_integers ()
basis_roi = OK.basis()

print(
f"Fixed mode , parameters: f={f}, d={d}, m={m}, "
f"sigma={sigma}, beta={beta}, num_samples ={ num_samples}"

)

m = int(eval(m))
sigma = float(eval(sigma))
places = K.places ()

basis_canonical_emb = matrix(
RDF , [list(nf_element_to_rd_vector(b, places)) for b in basis_roi]

)
out = run_batch(

r,
m,
sigma ,
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beta ,
OK,
basis_canonical_emb ,
basis_roi ,
places ,
num_samples ,
num_workers ,

)
print_result(f, d, m, r, beta , out)

def fixed_rank_mode(r, f_min , f_max , m, sigma , beta , num_samples , num_workers
↪→ ):
"""
Compute stats on the size of the kernel of Gaussian matrices with fixed
rank r and in varying number field QQ(zeta_f).

:param r:
:param f_min:
:param f_max:
:param m:
:param sigma:
:param beta:
:param num_samples:
:param num_workers:
"""
print(

f"Fixed rank mode , parameters: r={r}, f_min ={ f_min}, f_max={f_max}, "
"m={m}, sigma ={sigma}, beta={beta}, num_samples ={ num_samples}"

)
for f in range(f_min , f_max):

K, _ = CyclotomicField(f, "zeta").objgen ()
d = K.degree ()
OK = K.ring_of_integers ()
basis_roi = OK.basis()

current_m = int(eval(m))
current_sigma = float(eval(sigma))

places = K.places ()
basis_canonical_emb = matrix(

RDF , [list(nf_element_to_rd_vector(b, places)) for b in basis_roi
↪→ ]

)

out = run_batch(
r,
current_m ,
current_sigma ,
beta ,
OK,
basis_canonical_emb ,
basis_roi ,
places ,
num_samples ,
num_workers ,

)
print_result(f, d, current_m , r, beta , out)

def fixed_conductor_mode(f, r_min , r_max , m, sigma , beta , num_samples ,
↪→ num_workers):
"""
Compute stats on the size of the kernel of Gaussian matrices with
varying rank and fixed number field QQ(zeta_f).

:param f:
:param r_min:
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:param r_max:
:param m:
:param sigma:
:param beta:
:param num_samples:
:param num_workers:
"""
print(

f"Fixed conductor mode , parameters: f={f}, r_min ={ r_min}, f_max={
↪→ r_max}, "

f"m={m}, sigma={sigma}, beta={beta}, num_samples ={ num_samples}"
)

K, _ = CyclotomicField(f, "zeta").objgen ()
d = K.degree ()
OK = K.ring_of_integers ()
basis_roi = OK.basis()
places = K.places ()
basis_canonical_emb = matrix(

RDF , [list(nf_element_to_rd_vector(b, places)) for b in basis_roi]
)

for r in range(r_min , r_max):

current_m = int(eval(m))
current_sigma = float(eval(sigma))

out = run_batch(
r,
current_m ,
current_sigma ,
beta ,
OK,
basis_canonical_emb ,
basis_roi ,
places ,
num_samples ,
num_workers ,

)
print_result(f, d, current_m , r, beta , out)

def main():
global number_trial
parser = argparse.ArgumentParser(

formatter_class=argparse.RawDescriptionHelpFormatter ,
description="""Calculate statistics on the size in infinity norm of

↪→ the
canonical embedding of a beta -reduced basis of the kernel of some Gaussian
matrix on the ROI of a cyclotomic number field. In rank mode , the number
field is fixed and r_min <=r < r_max. In conductor mode , the rank is fixed
and f_min <=f < f_max. In fixed mode , r and f are fixed.

Format of the output: conductor degree rank width (ZZ-dimension of the kernel
↪→ ,

BKZ block -size) min , 1st quartile , median , 3rd quartile , maximum
""",

)
parser.add_argument(

"-f", type=int , help="The conductor of the number field (rank or
↪→ fixed mode)"

)
parser.add_argument(

"-r",
type=int ,
help="The rank of the module to consider (conductor or fixed mode)",

)
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parser.add_argument(
"-m",
type=str ,
help="Formula for m in function of r, f and d (in python syntax).

↪→ Default 2*r*log(d)",
default="2*r*log(d)",

)

parser.add_argument(
"--sigma",
type=str ,
help="Formula for sigma in function of r, f and d (in python syntax).

↪→ Default 2*sqrt(rd)",
default="2*sqrt(r*d)",

)

parser.add_argument(
"--f_min",
type=int ,
help="The min conductor of the number field (in conductor mode)",

)
parser.add_argument(

"--f_max",
type=int ,
help="The max conductor of the number field (in conductor mode)",

)

parser.add_argument(
"--r_min", type=int , help="The min rank of the module (in rank mode)"

)
parser.add_argument(

"--r_max", type=int , help="The max rank of the module (in rank mode)"
)

parser.add_argument(
"--beta",
type=float ,
help="The block -size coefficient for BKZ (default 0.5). The final

↪→ block -size will be beta*m*r",
default =0.5,

)

parser.add_argument(
"--samples",
type=int ,
default =100,
help="Number of sample to use (default: 100)",

)

parser.add_argument(
"--cores", type=int , default=0, help="Number of cores to use (default

↪→ : all)"
)
if len(argv) == 1:

parser.print_help ()
exit (1)

args = parser.parse_args ()

num_workers = args.cores if args.cores > 0 else None
number_trial = args.samples
beta = args.beta
num_samples = args.samples
m = args.m
sigma = args.sigma

if args.r is not None and args.f is not None:
f = args.f
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r = args.r
fixed_mode(f, r, m, sigma , beta , num_samples , num_workers)

elif args.r is not None:
r = args.r
f_min = args.f_min
f_max = args.f_max
fixed_rank_mode(r, f_min , f_max , m, sigma , beta , num_samples ,

↪→ num_workers)
elif args.f is not None:

f = args.f
r_min = args.r_min
r_max = args.r_max
fixed_conductor_mode(f, r_min , r_max , m, sigma , beta , num_samples ,

↪→ num_workers)

if __name__ == "__main__":
main()

C.3 Parametrising singular value inequalities

from sage.symbolic.relation import solve

"""
This script simplifies the tail bounds on Chi random variables defined in

↪→ Section 6, Lemma 6.1 of the paper.

We first write down the expressions obtain from the Gershgorin circle
↪→ theorem that dominate other values in the maximum (resp. minimum).
↪→ They are stated as a comment. Then we manually write down the
↪→ corresponding tail bounds defined in variables f1 to f7.

Next we simplify the tail bounds only making them larger (resp. smaller).
↪→ Lastly , we plot the difference between our values and the desired
↪→ upper (resp. lower) bound 1 + 1/x (resp. 1 - 1/x).

We check that the inequalities work by plotting them. The larger we make
↪→ m the closer the values are to the bound , hence we parametrise it
↪→ with c and give the user the option to plot for different values
↪→ of c. In the paper we use c = 7 and x \geq 4 since it satisfies
↪→ all inequalities.

This script has a range of different plots we draw via show(plot (...)).
↪→ To change the plot displayed please comment out the current plot
↪→ and uncomment the one required. In all plots the bound is
↪→ satisfied whenever the line is above zero.

"""

var("m,k,r,c,x")
r = k # We set r = k for simplicity , in the paper we set m = c^2 * x^2 *

↪→ max(r,k).
m = c^2 * x^2 * k

# We only need the inequality plots for positive parameters.
assume(c>1)
assume(x>1)

# THE UPPER TAIL

# The random variables we analyse:

# x_(m-1)^2 + y_(r-1)^2 + x_(m) * y_(r-1) + x_(m-1) * y_(r-2)

# Their norm divided by m is smaller than:

f1 = (m - 1)/m + 2 * sqrt((m-1)*k/m^2) + 2*k/m + (r - 1)/m + 2 * sqrt((r-1)*k
↪→ /m^2) + 2*k/m + sqrt(1 + 2* sqrt(k/m) + 2*k/m) * sqrt((r - 1)/m + 2 *
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↪→ sqrt((r-1)*k/m^2) + 2*k/m) + sqrt((m-1)/m + 2 * sqrt((m-1)*k/m^2) + 2*
↪→ k/m) * sqrt((r - 2)/m + 2 * sqrt((r-2)*k/m^2) + 2*k/m)

# We simplify the expression making the bound looser

f1 = f1.subs ({(m-1):m})
f1 = f1.subs ({(k-1):k})
f1 = f1.subs ({(k-2):k})
f1 = f1.canonicalize_radical ()

# Next random variables we analyse:

# x_(m)^2 / m + x_(m) * y_(r-1) / m <=

f2 = 1 + 2 * sqrt(k/m) + 2*k/m + sqrt(1 + 2* sqrt(k/m) + 2*k/m) * sqrt((r -
↪→ 1)/m + 2 * sqrt((r-1)*k/m^2) + 2*k/m)

# We simplify the expression

f2 = f2.subs ({(k-1):k})
f2 = f2.canonicalize_radical ()

# The plot of f1 and f2 compared with 1 + 1/x.

show(plot (((1 + 1/x) - f2).subs(c=7), 1, 10) + plot (((1 + 1/x) - f1).subs(c
↪→ =7), 1, 10, color = "green"))

# THE LOWER TAIL

"""
Here O \cdot Z \cdot Z^\ transpose \cdot O^\ transpose has different form

↪→ depending on r so we consider cases r >= 4, r = 3 and r = 2.
↪→ Otherwise the lower tail is analysed in the same way.

"""

# r >= 4

# Random variable we analyse:

# x_(m)^2 /m - x_(m) * y_(r-1) /m >=

f3 = 1 - 2 * sqrt(k/m) - sqrt(1 + 2 * sqrt(k/m) + 2 * k/m) * sqrt((r - 1)/m +
↪→ 2 * sqrt((r-1)*k/m^2) + 2 * k/m)

# We simplify the expression

f3 = f3.subs ({(k-1):k})
f3 = f3.canonicalize_radical ()

# Random variable we analyse:

# x_(m - r + 2)^2 / m + y_(2)^2 / m - x_(m - r + 2) * y_(1) / m - x_(m - r +
↪→ 3) * y_(2) / m >=

# we expect this one to be the smallest

f4 = 1 - (r - 4)/m - 2 * sqrt((m - r + 4)*k/m^2) - sqrt((m - r + 2)/m + 2 *
↪→ sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt (1/m + 2 * sqrt(k/m^2) + 2 *
↪→ k/m) - sqrt((m - r + 3)/m + 2 * sqrt((m - r + 3)*k/m^2) + 2 * k/m) *
↪→ sqrt (2/m + 2 * sqrt (2*k/m^2) + 2 * k/m)

# We simplify the expression

f4 = f4.subs ({(k-4):k})
f4 = f4.subs ({(m - r + 4):m})
f4 = f4.subs ({(m - r + 2):m})
f4 = f4.subs ({(m - r + 3):m})
f4 = f4.subs(k = 4)
f4 = f4.canonicalize_radical ()
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# Random variable we analyse:

# x_(m - r + 1)^2 / m + y_(1)^2 / m - x_(m - r + 2) * y_(1) / m >=

f5 = 1 - (r - 2)/m - 2 * sqrt((m - r + 2)*k/m^2) - sqrt((m - r+ 2)/m + 2 *
↪→ sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt (1/m + 2 * sqrt(k/m^2) + 2 *
↪→ k/m)

# We simplify the expression

f5 = f5.subs ({(k-2):k})
f5 = f5.subs ({(m - r + 2):m})
f5 = f5.subs(k = 4)
f5 = f5.canonicalize_radical ()

# c = 6 works for x > 4

# Uncomment to show the plot one at a time.

#show(plot((f3 - (1 - 1/x)).subs(c=6), 1, 10) + plot((f4 - (1 - 1/x)).subs(c
↪→ = 6), 1, 10, color = "green") + plot((f5 - (1 - 1/x)).subs(c=6), 1,
↪→ 10, color = "red"))

# special case for r = 3 (since we have m - r + 4) f6 = f4 but the bounds
↪→ after are different

f6 = (m - r + 4)/m - 2 * sqrt((m - r + 4)*k/m^2) - sqrt((m - r+ 2)/m + 2 *
↪→ sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt (1/m + 2 * sqrt(k/m^2) + 2 *
↪→ k/m) - sqrt((m - r + 3)/m + 2 * sqrt((m-r+3)*k/m^2) + 2 * k/m) * sqrt
↪→ (2/m + 2 * sqrt (2*k/m^2) + 2 * k/m)

# We simplify the expression

f6 = f6.subs ({(m - r + 4):(m+1)})
f6 = f6.subs ({(m - r + 2):m})
f6 = f6.subs ({(m - r + 3):m})
f6 = f6.subs(k = 3)
f6 = f6.canonicalize_radical ()

# since k = 3 now the combined effect makes c = 6 require x > 8 which is a
↪→ bit worse than for r > 4

# Uncomment to show the plot one at a time.

#show(plot((f3 - (1 - 1/x)).subs(c=7), 1, 10) + plot((f6 - (1 - 1/x)).subs(c
↪→ =7), 1, 10, color = "green") + plot((f5 - (1 - 1/x)).subs(c=7), 1, 10,
↪→ color = "red"))

# for r = 2 the matrix looks simpler and we only get x_(m)^2 / m - x_(m) * y_
↪→ (r-1)) / m >=

f7 = 1 - 2 * sqrt(k/m) - sqrt( 1 + 2 * sqrt(k/m) + 2 * k/m) * sqrt((r - 1)/m
↪→ + 2 * sqrt((r-1)*k/m^2) + 2 * k/m)

# We simplify the expression

f7 = f7.subs ({(k-1):k})
f7 = f7.canonicalize_radical ()

# Uncomment to show the plot one at a time.

#show(plot((f7 - (1 - 1/x)).subs(c=5), 1, 10))
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import numpy as np

from sage.all import primes, mod, exp, RR, euler_phi, ln


def find_splitting(p, n):
    """
    Return (N, g), g being the number of prime above p in the nth
    cyclotomic, and N their norm https://math.stackexchange.com/a/1666456
    (Proposition 10.3 in Neukirch - Algebraic Number Theory)
    """
    k = 0
    d = n

    while d % p == 0:
        k += 1
        d /= p
    if d == 1:
        return (p, 1)

    r = mod(p, d).multiplicative_order()
    return (p**r, euler_phi(n) / (euler_phi(p**k) * r))


def find_approx_zeta_prime_cyclo(n, eps):
    """
    Return `(a, b)` such that the Prime zeta function of the cyclotomic
    field of conductor `n` is approximately equal to `b⋅a^x`.

    :param n:
    :param eps: a precision parameter.

    EXAMPLE::

        sage: n = 2**16 + 1
        sage: a, b = find_approx_zeta_prime_cyclo(n, 1e-100)
        sage: n, euler_phi(n), a, b
        (65537, 65536, 0.0000152585561077570, 1.00000011433444)
    """
    L = [find_splitting(p, n) for p in primes(1, n + 1)]
    L = [(N, a) for (N, a) in L if N < 1 / eps]

    def approx_zeta_prime(x):
        return sum([RR(a / N**x) for (N, a) in L])

    X = list(range(2, 20))  # No particular reason for the choice of 20
    Y1 = [approx_zeta_prime(x) for x in X]
    Y = [float(ln(y)) for y in Y1 if y != 0]
    if len(Y) == 0:
        return (None, None)

    X = X[: len(Y)]
    a, b = np.polyfit(X, Y, 1)
    return RR(exp(a)), RR(exp(b))



from sys import argv
from sage.all import vector, RDF, matrix, ZZ, CyclotomicField
from sage.interfaces.r import r as r_stats

from sage.stats.distributions.discrete_gaussian_lattice import (
    DiscreteGaussianDistributionLatticeSampler as DGSL,
)

import multiprocessing
import argparse


def nf_element_to_rd_vector(x, places):
    """
    Compute the canonical embedding of x.

    (separating real and imaginary part for complex embeddings)

    :param x:
    :param places:

    """
    cc_elts = [f(x) for f in places]
    rr_elts = []
    for z in cc_elts:
        rr_elts.append(z.real())
        rr_elts.append(z.imag())
    return vector(rr_elts)


def sample_gaussian_element(DGaussian, basis_canonical_emb, basis_roi):
    """
    TODO describe function

    :param DGaussian:
    :param basis_canonical_emb:
    :param basis_roi:
    :returns:

    """
    d = len(basis_roi)
    coords = vector(RDF, DGaussian() * basis_canonical_emb.inverse())
    coords = vector([x.round() for x in coords])
    return sum([coords[i] * basis_roi[i] for i in range(d)])


def rotation_matrix(x, OK, basis_roi):
    """
    Return the multiplication matrix of x in coordinate embedding.

    :param x:
    :param OK:
    :param basis_roi:

    """
    return matrix([list(OK.coordinates(b * x)) for b in basis_roi])


def ok_matrix_to_rotation_matrix(M, OK, basis_roi):
    """
    Return a ZZ-rotation matrix from an OK matrix.

    :param M:
    :param OK:
    :param basis_roi:

    """
    L = [[rotation_matrix(x, OK, basis_roi) for x in r] for r in M.rows()]
    return matrix.block(ZZ, L)


def infinity_norm_elt(x, places):
    """
    Return the infinite norm in canonical embedding of x

    :param x:
    :param places:

    """
    return max([abs(f(x)) for f in places])


def infinity_norm_matrix(M, places):
    """
    Return the maximum infinite norm (in canonical embedding) of all coefficients of M.

    :param M:
    :param places:

    """
    return max([infinity_norm_elt(x, places) for x in M.coefficients()])


def print_result(f, d, m, r, beta, out):
    """
    Compute and print the quartiles of the output of run_batch

    :param f:
    :param d:
    :param m:
    :param r:
    :param beta:
    :param out:

    """
    stats = dict(
        zip(
            (Q := [0, 1 / 4, 1 / 2, 3 / 4, 1]),
            r_stats.quantile(out, Q)._sage_()["DATA"],
        )
    )
    print(
        f"f={f} d={d} r={r} m={m} (dim {(m-r)*d} kernel, block-size {int((m-r)*d*beta)})"
        "\n"
        f"{stats[0]}, {stats[1/4]}, {stats[1/2]}, {stats[3/4]}, {stats[1]}"
        "\n"
    )


class Worker:
    """
    This worker is used for parallel computing.

    It samples a Gaussian matrix of size r*m with parameter sigma in OK and
    compute a beta-BKZ-reduced basis of its kernel and returns the infinity norm
    of this basis.
    """

    def __init__(
        self, r, m, sigma, OK, basis_canonical_emb, basis_roi, places, block_size
    ):
        """
        TODO describe function

        :param r:
        :param m:
        :param sigma:
        :param OK:
        :param basis_canonical_emb:
        :param basis_roi:
        :param places:
        :param block_size:
        :returns:

        """
        self.r = r
        self.m = m
        self.basis_canonical_emb = basis_canonical_emb
        self.basis_roi = basis_roi
        self.block_size = block_size
        self.places = places
        self.OK = OK
        self.sigma = sigma

    def __call__(self, _):
        """
        TODO describe function

        """
        DGaussian = DGSL(self.basis_canonical_emb, self.sigma)

        # Sample a r*m matrix from the Gaussian distribution
        X = matrix(
            [
                [
                    sample_gaussian_element(
                        DGaussian, self.basis_canonical_emb, self.basis_roi
                    )
                    for _ in range(self.r)
                ]
                for _ in range(self.m)
            ]
        )
        # Make it into a ZZ-matrix to run BKZ
        coef_X = ok_matrix_to_rotation_matrix(X, self.OK, self.basis_roi)

        basis_kernel = coef_X.kernel().matrix()
        # If there is no kernel, return 0 (this means that m should be chosen larger)
        if basis_kernel.nrows() == 0:
            return 0

        # Run BKZ on the kernel basis
        small_basis_kernel = basis_kernel.BKZ(block_size=self.block_size)
        return infinity_norm_matrix(small_basis_kernel, self.places)


def run_batch(
    r,
    m,
    sigma,
    beta,
    OK,
    basis_canonical_emb,
    basis_roi,
    places,
    num_samples,
    num_workers,
):
    """
    Runs num_samples Workers in parallel using num_workers threads

    :param r:
    :param m:
    :param sigma:
    :param beta:
    :param OK:
    :param basis_canonical_emb:
    :param basis_roi:
    :param places:
    :param num_samples:
    :param num_workers:

    """
    block_size = max(1, int((m - r) * OK.degree() * beta))
    worker = Worker(r, m, sigma, OK, basis_canonical_emb, basis_roi, places, block_size)
    with multiprocessing.Pool(processes=num_workers) as pool:
        results = pool.map(worker, range(1, num_samples))
    return sorted(results)


def fixed_mode(f, r, m, sigma, beta, num_samples, num_workers):
    """
    Compute stats on the size of the kernel of Gaussian matrices with fixed
    rank r and number field QQ(zeta_f).

    :param f:
    :param r:
    :param m:
    :param sigma:
    :param beta:
    :param num_samples:
    :param num_workers:
    """
    K, zeta = CyclotomicField(f, "zeta").objgen()
    d = K.degree()
    OK = K.ring_of_integers()
    basis_roi = OK.basis()

    print(
        f"Fixed mode, parameters: f={f}, d={d}, m={m}, "
        f"sigma={sigma}, beta={beta}, num_samples={num_samples}"
    )

    m = int(eval(m))
    sigma = float(eval(sigma))
    places = K.places()

    basis_canonical_emb = matrix(
        RDF, [list(nf_element_to_rd_vector(b, places)) for b in basis_roi]
    )
    out = run_batch(
        r,
        m,
        sigma,
        beta,
        OK,
        basis_canonical_emb,
        basis_roi,
        places,
        num_samples,
        num_workers,
    )
    print_result(f, d, m, r, beta, out)


def fixed_rank_mode(r, f_min, f_max, m, sigma, beta, num_samples, num_workers):
    """
    Compute stats on the size of the kernel of Gaussian matrices with fixed
    rank r and in varying number field QQ(zeta_f).

    :param r:
    :param f_min:
    :param f_max:
    :param m:
    :param sigma:
    :param beta:
    :param num_samples:
    :param num_workers:
    """
    print(
        f"Fixed rank mode, parameters: r={r}, f_min={f_min}, f_max={f_max}, "
        "m={m}, sigma={sigma}, beta={beta}, num_samples={num_samples}"
    )
    for f in range(f_min, f_max):
        K, _ = CyclotomicField(f, "zeta").objgen()
        d = K.degree()
        OK = K.ring_of_integers()
        basis_roi = OK.basis()

        current_m = int(eval(m))
        current_sigma = float(eval(sigma))

        places = K.places()
        basis_canonical_emb = matrix(
            RDF, [list(nf_element_to_rd_vector(b, places)) for b in basis_roi]
        )

        out = run_batch(
            r,
            current_m,
            current_sigma,
            beta,
            OK,
            basis_canonical_emb,
            basis_roi,
            places,
            num_samples,
            num_workers,
        )
        print_result(f, d, current_m, r, beta, out)


def fixed_conductor_mode(f, r_min, r_max, m, sigma, beta, num_samples, num_workers):
    """
    Compute stats on the size of the kernel of Gaussian matrices with
    varying rank and fixed number field QQ(zeta_f).

    :param f:
    :param r_min:
    :param r_max:
    :param m:
    :param sigma:
    :param beta:
    :param num_samples:
    :param num_workers:
    """
    print(
        f"Fixed conductor mode, parameters: f={f}, r_min={r_min}, f_max={r_max}, "
        f"m={m}, sigma={sigma}, beta={beta}, num_samples={num_samples}"
    )

    K, _ = CyclotomicField(f, "zeta").objgen()
    d = K.degree()
    OK = K.ring_of_integers()
    basis_roi = OK.basis()
    places = K.places()
    basis_canonical_emb = matrix(
        RDF, [list(nf_element_to_rd_vector(b, places)) for b in basis_roi]
    )

    for r in range(r_min, r_max):

        current_m = int(eval(m))
        current_sigma = float(eval(sigma))

        out = run_batch(
            r,
            current_m,
            current_sigma,
            beta,
            OK,
            basis_canonical_emb,
            basis_roi,
            places,
            num_samples,
            num_workers,
        )
        print_result(f, d, current_m, r, beta, out)


def main():
    global number_trial
    parser = argparse.ArgumentParser(
        formatter_class=argparse.RawDescriptionHelpFormatter,
        description="""Calculate statistics on the size in infinity norm of the
canonical embedding of a beta-reduced basis of the kernel of some Gaussian
matrix on the ROI of a cyclotomic number field. In rank mode, the number
field is fixed and r_min <=r < r_max. In conductor mode, the rank is fixed
and f_min <=f < f_max. In fixed mode, r and f are fixed.

Format of the output: conductor degree rank width (ZZ-dimension of the kernel,
BKZ block-size) min, 1st quartile, median, 3rd quartile, maximum
""",
    )
    parser.add_argument(
        "-f", type=int, help="The conductor of the number field (rank or fixed mode)"
    )
    parser.add_argument(
        "-r",
        type=int,
        help="The rank of the module to consider (conductor or fixed mode)",
    )

    parser.add_argument(
        "-m",
        type=str,
        help="Formula for m in function of r, f and d (in python syntax). Default 2*r*log(d)",
        default="2*r*log(d)",
    )

    parser.add_argument(
        "--sigma",
        type=str,
        help="Formula for sigma in function of r, f and d (in python syntax). Default 2*sqrt(rd)",
        default="2*sqrt(r*d)",
    )

    parser.add_argument(
        "--f_min",
        type=int,
        help="The min conductor of the number field (in conductor mode)",
    )
    parser.add_argument(
        "--f_max",
        type=int,
        help="The max conductor of the number field (in conductor mode)",
    )

    parser.add_argument(
        "--r_min", type=int, help="The min rank of the module (in rank mode)"
    )
    parser.add_argument(
        "--r_max", type=int, help="The max rank of the module (in rank mode)"
    )

    parser.add_argument(
        "--beta",
        type=float,
        help="The block-size coefficient for BKZ (default 0.5). The final block-size will be beta*m*r",
        default=0.5,
    )

    parser.add_argument(
        "--samples",
        type=int,
        default=100,
        help="Number of sample to use (default: 100)",
    )

    parser.add_argument(
        "--cores", type=int, default=0, help="Number of cores to use (default: all)"
    )
    if len(argv) == 1:
        parser.print_help()
        exit(1)

    args = parser.parse_args()

    num_workers = args.cores if args.cores > 0 else None
    number_trial = args.samples
    beta = args.beta
    num_samples = args.samples
    m = args.m
    sigma = args.sigma

    if args.r is not None and args.f is not None:
        f = args.f
        r = args.r
        fixed_mode(f, r, m, sigma, beta, num_samples, num_workers)
    elif args.r is not None:
        r = args.r
        f_min = args.f_min
        f_max = args.f_max
        fixed_rank_mode(r, f_min, f_max, m, sigma, beta, num_samples, num_workers)
    elif args.f is not None:
        f = args.f
        r_min = args.r_min
        r_max = args.r_max
        fixed_conductor_mode(f, r_min, r_max, m, sigma, beta, num_samples, num_workers)


if __name__ == "__main__":
    main()



from sage.symbolic.relation import solve

"""
    This script simplifies the tail bounds on Chi random variables defined in Section 6, Lemma 6.1 of the paper. 
    
    We first write down the expressions obtain from the Gershgorin circle theorem that dominate other values in the maximum (resp. minimum). They are stated as a comment. Then we manually write down the corresponding tail bounds defined in variables f1 to f7. 

    Next we simplify the tail bounds only making them larger (resp. smaller). Lastly, we plot the difference between our values and the desired upper (resp. lower) bound 1 + 1/x (resp. 1 - 1/x). 

    We check that the inequalities work by plotting them. The larger we make m the closer the values are to the bound, hence we parametrise it with c and give the user the option to plot for different values of c. In the paper we use c = 7 and x \geq 4 since it satisfies all inequalities. 

    This script has a range of different plots we draw via show(plot(...)). To change the plot displayed please comment out the current plot and uncomment the one required. In all plots the bound is satisfied whenever the line is above zero.
"""

var("m,k,r,c,x")
r = k   # We set r = k for simplicity, in the paper we set m = c^2 * x^2 * max(r,k).
m = c^2 * x^2 * k

# We only need the inequality plots for positive parameters.
assume(c>1)
assume(x>1)

# THE UPPER TAIL

# The random variables we analyse:

# x_(m-1)^2 + y_(r-1)^2 + x_(m) * y_(r-1) + x_(m-1) * y_(r-2) 

# Their norm divided by m is smaller than:

f1 = (m - 1)/m + 2 * sqrt((m-1)*k/m^2) + 2*k/m + (r - 1)/m + 2 * sqrt((r-1)*k/m^2) + 2*k/m + sqrt(1 + 2* sqrt(k/m) + 2*k/m) * sqrt((r - 1)/m + 2 * sqrt((r-1)*k/m^2) + 2*k/m) + sqrt((m-1)/m + 2 * sqrt((m-1)*k/m^2) + 2*k/m) * sqrt((r - 2)/m + 2 * sqrt((r-2)*k/m^2) + 2*k/m)

# We simplify the expression making the bound looser

f1 = f1.subs({(m-1):m})
f1 = f1.subs({(k-1):k})
f1 = f1.subs({(k-2):k})
f1 = f1.canonicalize_radical() 

# Next random variables we analyse:

# x_(m)^2 / m + x_(m) * y_(r-1) / m <=

f2 = 1 + 2 * sqrt(k/m) + 2*k/m + sqrt(1 + 2* sqrt(k/m) + 2*k/m) * sqrt((r - 1)/m + 2 * sqrt((r-1)*k/m^2) + 2*k/m)

# We simplify the expression 

f2 = f2.subs({(k-1):k})
f2 = f2.canonicalize_radical() 

# The plot of f1 and f2 compared with 1 + 1/x. 

show(plot(((1 + 1/x) - f2).subs(c=7), 1, 10) + plot(((1 + 1/x) - f1).subs(c=7), 1, 10, color = "green"))

# THE LOWER TAIL

"""
    Here O \cdot Z \cdot Z^\transpose \cdot O^\transpose has different form depending on r so we consider cases r >= 4, r = 3 and r = 2. Otherwise the lower tail is analysed in the same way.
"""

# r >= 4

# Random variable we analyse:

# x_(m)^2 /m - x_(m) * y_(r-1) /m >= 

f3 = 1 - 2 * sqrt(k/m) - sqrt(1 + 2 * sqrt(k/m) + 2 * k/m) * sqrt((r - 1)/m + 2 * sqrt((r-1)*k/m^2) + 2 * k/m)

# We simplify the expression 

f3 = f3.subs({(k-1):k})
f3 = f3.canonicalize_radical() 

# Random variable we analyse:

# x_(m - r + 2)^2 / m + y_(2)^2 / m - x_(m - r + 2)  * y_(1) / m - x_(m - r + 3) * y_(2) / m >=
# we expect this one to be the smallest

f4 = 1 - (r - 4)/m - 2 * sqrt((m - r + 4)*k/m^2) - sqrt((m - r + 2)/m + 2 * sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt(1/m + 2 * sqrt(k/m^2) + 2 * k/m) - sqrt((m - r + 3)/m + 2 * sqrt((m - r + 3)*k/m^2) + 2 * k/m) * sqrt(2/m + 2 * sqrt(2*k/m^2) + 2 * k/m)

# We simplify the expression 

f4 = f4.subs({(k-4):k})
f4 = f4.subs({(m - r + 4):m})
f4 = f4.subs({(m - r + 2):m})
f4 = f4.subs({(m - r + 3):m})
f4 = f4.subs(k = 4)
f4 = f4.canonicalize_radical() 

# Random variable we analyse:

# x_(m - r + 1)^2 / m + y_(1)^2 / m - x_(m - r + 2) * y_(1) / m >= 

f5 = 1 - (r - 2)/m - 2 * sqrt((m - r + 2)*k/m^2) - sqrt((m - r+ 2)/m + 2 * sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt(1/m + 2 * sqrt(k/m^2) + 2 * k/m)

# We simplify the expression 

f5 = f5.subs({(k-2):k})
f5 = f5.subs({(m - r + 2):m})
f5 = f5.subs(k = 4)
f5 = f5.canonicalize_radical() 

# c = 6 works for x > 4 

# Uncomment to show the plot one at a time.

#show(plot((f3 - (1 - 1/x)).subs(c=6), 1, 10) + plot((f4 - (1 - 1/x)).subs(c = 6), 1, 10, color = "green") + plot((f5 - (1 - 1/x)).subs(c=6), 1, 10, color = "red"))

# special case for r = 3 (since we have m - r + 4) f6 = f4 but the bounds after are different

f6 = (m - r + 4)/m - 2 * sqrt((m - r + 4)*k/m^2) - sqrt((m - r+ 2)/m + 2 * sqrt((m - r + 2)*k/m^2) + 2 * k/m) * sqrt(1/m + 2 * sqrt(k/m^2) + 2 * k/m) - sqrt((m - r + 3)/m + 2 * sqrt((m-r+3)*k/m^2) + 2 * k/m) * sqrt(2/m + 2 * sqrt(2*k/m^2) + 2 * k/m)

# We simplify the expression 

f6 = f6.subs({(m - r + 4):(m+1)})
f6 = f6.subs({(m - r + 2):m})
f6 = f6.subs({(m - r + 3):m})
f6 = f6.subs(k = 3)
f6 = f6.canonicalize_radical() 

# since k = 3 now the combined effect makes c = 6 require x > 8 which is a bit worse than for r > 4

# Uncomment to show the plot one at a time.

#show(plot((f3 - (1 - 1/x)).subs(c=7), 1, 10) + plot((f6 - (1 - 1/x)).subs(c=7), 1, 10, color = "green") + plot((f5 - (1 - 1/x)).subs(c=7), 1, 10, color = "red"))

# for r = 2 the matrix looks simpler and we only get x_(m)^2 / m - x_(m) * y_(r-1)) / m >=

f7 = 1 - 2 * sqrt(k/m) - sqrt( 1 + 2 * sqrt(k/m) + 2 * k/m) * sqrt((r - 1)/m + 2 * sqrt((r-1)*k/m^2) + 2 * k/m) 

# We simplify the expression 

f7 = f7.subs({(k-1):k})
f7 = f7.canonicalize_radical() 

# Uncomment to show the plot one at a time.

#show(plot((f7 - (1 - 1/x)).subs(c=5), 1, 10))


