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Introduction: why study structured lattice
problems?



Communication Security
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Some Example of Protocols

1.
2.

3.
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Security proof and problem hardness
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Our Mathematical Object of Choice: Lattices

Lattice spanned by B ∈ Zn×n:

L(B) = {B · x, x ∈ Zn} .
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The Hard Problem for Lattices: Finding a Short Vector

Shortest Vector Problem (SVP)

Given B, find a shortest non-zero
vector v in the lattice spanned by B.

In dimension n:
Finding v : ∼ 2O(n) op.
Finding w : ∼ 2O(n)/γ op.
Seems hard even with quantum
computers.

In cryptography, typically
n ≃ 1000, γ = poly(n).
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v w
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Structured Lattices: Motivation

Signature scheme

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 6 / 34



Structured Lattices: Motivation

Signature scheme

Using any matrix B ∈ Zn×n: n2 coefficients, long running-time, memory inefficient.
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Structured Lattices

Idea: use matrices with structure (e.g. from algebraic number theory).
→ Module Lattices.

Rank 1
Ideal Lattices Module lattice

Unstructured Rank 3
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New Lattices, New (easier) Problems

Cramer, Ducas, Peikert, and Regev. Recovering short generators of principal ideals in cyclotomic rings. EUROCRYPT, 2016.
Cramer, Ducas, and Wesolowski. Short Stickelberger class relations and application to Ideal-SVP. EUROCRYPT, 2017.
Pellet-Mary, Hanrot, and Stehlé. Approx-SVP in ideal lattices with pre-processing. EUROCRYPT, 2019.
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What do I mean, “easier”?

Hardness(A) ≤ Hardness(B)

≡ “If someone solves B, they can solve A”.

Adaptively

Reduction
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In this presentation: Average-case problems

Lattices

Easy lattices

Distribution
D
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Average-case reductions

Arbitrary lattice
Lattices

Adaptively

Reduction
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What I did during my Phd

[LS15] Langlois, Stehlé. Worst-case to
average-case reductions for module lattices.
DCC 2014.

[AD17] Albrecht, Deo. Large Modulus
Ring-LWE Module-LWE. ASIACRYPT
2017.

[PS21] Pellet-Mary, Stehlé. On the hardness
of the NTRU problem. ASIACRYPT 2021.

[Gen09] Gentry. A Fully Homomorphic
Encryption Scheme. PhD thesis. 2009.

[BDPW20] de Boer, Ducas, Pellet-Mary,
Wesolowski. Random self-reducibility of
Ideal-SVP via Arakelov random walks.
CRYPTO, 2020.
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Worst-case to Average-case reduction for
mod-uSVP2



mod-uSVP2 lattices: they have something extra

Typical lattice mod-uSVP2 instance

γ-mod-uSVP2

Given a basis B of a module M ⊂ O2
K s.t. λ1(M) ≤ det(B)1/(2d)

/γ,
find a short non-zero vector in it.
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State of the art for mod-uSVP2

For Z-lattices

BDD SIVP

uSVP

Quantum
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State of the art for mod-uSVP2

For Z-lattices

BDD SIVP

uSVP

Quantum
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Anatomy of a mod-uSVP2 instance: QR factorization

b1

b2

r12

r22

r11

Any (free) mod-uSVP2 instance has a basis

B = Q ·
(

r11 r12
0 r22

)
with r11 ≪ r22, r12 ∈ (−r11

2 , r11
2 ) and Q

orthogonal.

Goal for the randomization:
• Randomize Q.
• Randomize r11 and r22.
• Randomize r12.

Difficulty: we don’t have access to the good
basis.
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Randomization of r11 and r22

We multiply by a scalar: this changes r11 and r22 but r11/r22 is fixed.
Solution: sparsification by a prime p.

=⇒

Sparsification by p
Only keep 1 every p points. Multiplies r11 by p with high probability and leaves r22 unchanged.
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Randomization of r12

Idea: blur the space with a matrix D.

D · Q ∼ D = Q′ ·
(

a b
0 c

)
.

Then

M ′ = D · M ∼ Q′ ·
(

r ′11 r ′12
0 r ′22

)
where

r ′12 =(b + ar12) mod r ′11

≈Unif(OK mod r ′11)

when D is a Gaussian.
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Visualization of the reduction

Randomization
Input: Minput .

Sparsification:
M2 := Minput · S.
Gaussian:
Mrandom := G · M2
Magic⋆ happens.

Retrieving short vector in Minput

Oracle:
O(Mrandom) → v1 ∈ Mrandom.
Gaussian−1:
v2 = G−1 · v1 ∈ M2.
Sparsification−1:
v2 ∈ M2 ⊂ Minput→ v2 is a solution!
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Summary: Simplified Statement

The last slides

Theorem
Solving γ-mod-uSVP2 reduces to solving mod-uSVP2 for a lattice sampled from Davg w.h.p.
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Under the Rug

• We are working with number fields all along.
• Non-free modules?
• How to round our module to have integers?
• Change in the approximation factor.
• Running time.
• Randomizing is not exact.
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Contributions on mod-uSVP2

Worst-case Average-case

id-HSVP

[PS21] [FPSW23, BDPW20, Gen09]

NTRU
(search)

mod-uSVP2

NTRU
(search)

mod-uSVP2

id-HSVP
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Worst-case to Average-case reduction for
id-HSVP



In more details: Number fields and ideals

Zn OK = Z[X ]/(X n + 1) Z[X ]/(X 2 + 1)

v =

( a0
...

an−1

)
P(X ) = a0 + a1X + . . .+ an−1X n−1 X + 2

∥v∥
√∑n−1

i=0 a2
i

√
5

Definition (Ideal)

A set a ⊆ K is an ideal if it is discrete, stable by addition and by multiplication by any element
of OK . Example: (X + 2) · OK .

Norm of an ideal: N (I) = Vol(I)/Vol(OK ) ∈ Z.
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Ideals are lattices!

L = (X + 2) · OK

=
{
(X + 2) · (a + bX ) mod X 2 + 1

}

= {(2a − b) + (a + 2b) · X , a, b ∈ Z}
≃
( 2 −1

1 2
)
· Z2.

The lattice L associated to (X + 2) · OK .
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Ideal Arithmetic: Basic Notions

Let a, b ideals of K , and a ∈ K .

Principal ideal
(a) = {x · a, x ∈ OK}.

Multiplication and inverse
a · b = {

∑
i ai · bi} , a−1 = {x ∈ K , x · a ⊆ OK}. We have that a · a−1 = OK .

Prime ideals
An ideal p ̸= OK is prime (p ∈ P) if

p = a · b ⇒ a = OK or b = OK .
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Is id-HSVP hard for a Random Ideal?

No clear answer. What do you mean by “Random”?

Worst-case
id-HSVP

id-HSVP for inverses
of uniform small primes

id-HSVP for “uniform”
ideals of large norm

[Gen09]

[BDPW19]

Not natural! We would want the same result for uniform small prime ideals.

[Gen09] Gentry. A Fully Homomorphic Encryption Scheme. [BDPW20] de Boer, Ducas, Pellet-Mary, Wesolowski. Random self-reducibility of Ideal-SVP via Arakelov random walks.
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How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1
Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1
Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1
Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1

Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1
Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



How to sample a uniform ideal? [Boe22]

Sampling b uniform
Input: any ideal a.

Sparsification by random p: a1 = a · p.

Scaling: I1 = a1/N (a1)
1/d

Distortion I2 = D · I1
Sample small x ∈ I2.

Magic⋆ happens.

[Boe22]: K. de Boer. Random Walks on Arakelov Class Groups. PhD thesis,
Leiden University, 2022

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 26 / 34



Sampling with a Trapdoor: SampleIdeal

Sampling (b, y) with y ∈ (b · a)−1 small

Input: any ideal a sa ∈ a.

Sparsification by random p:
a1 = a · p. sa1 = sa · sp.

Scaling:
I1 = a1/N (a1)

1/d sI1 = sa1/(· · · ).

Distortion
I2 = D · I1 sI2 = D · sI1 .

y = x−1 · sp · sa
Magic happens
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Magic happens?
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Sampling with a Trapdoor: SampleIdealB

Sampling (b, y) with y ∈ (b · a)−1 small

Input: any ideal a sa ∈ a.

Sparsification by random p:
a1 = a · p. sa1 = sa · sp.

Scaling:
I1 = a1/N (a1)

1/d sI1 = sa1/(· · · ).

Distortion
I2 = D · I1 sI2 = D · sI1 .

Sample x ∈ I
⋂
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The shape B

Bη
A,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Ln( x
N (x)1/d

)∥∥∥∥
2
≤ log(η)

}
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Taking a step back: SampleIdealB

SampleIdealB

1. Takes as input a ⊆ OK and sa ∈ a small.
2. Output b ⊆ OK uniform and y ∈ b−1 · a−1 small.

Now if we can find sb ∈ b small, then sb · y is
small and

sb · y ∈ b · b−1 · a−1 = a−1

id-HSVP(a−1)
SampleIdealB−−−−−−−−→ id-HSVP(a) + id-HSVP(b)

Worst-case id-HSVP

id-HSVP on uniform p−1

id-HSVP on uniform p

[Gen09]

SampleIdealB
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The P−1-ideal-SVP to P-ideal-SVP reduction

The oracle O solves id-HSVP for p uniform prime of norm in [A,B].

Input: An ideal I = p−1 with p uniform prime of norm in [A,B].
Output: x ∈ p−1 \ {0} small.

1: Let sp = O(p).
2: Let (b, y) = SampleIdealB(p, sp). ▷∥y∥ small
3: if b is not prime then
4: Fail.
5: Let sb = O(b). ▷∥sb∥ small
6: Return sb︸︷︷︸

∈b

· y︸︷︷︸
∈(b·p)−1

∈ p−1. ▷∥y · sb∥ small
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Contributions and open problems for id-HSVP

Contributions:
• New ideal sampling algorithm.
• Solving id-HSVP on average over primes ≃ solving id-HSVP for any ideal.

Open problems:
• Can we have such reduction without factoring?
• Can we get rid of the cost dependency in ρK ?
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Conclusion and Perspectives



Taking a step back

• Structured lattice problems → better performance for cryptography.
• But might introduce weaknesses.
• We worked on ranks 1 and 2.

Rank 1: id-HSVP

• Proposed a new sampling algorithm.
• Proved that a “natural” distribution is

secure.

Rank 2: mod-uSVP2

• Proposed a “natural” distribution of
instances.

• Proved a worst-case to average-case
reduction for this distribution.
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Other contributions of this thesis

Reduction between
mod-uSVP2 and NTRU.

A new bound on
ideal-counting function.

A more generic average-case
reduction for id-HSVP.

U(W−1)-id-HSVP

U(W)-id-HSVP

+

U(IA,B)-id-HSVP
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Perspectives

Reductions

• Understand gap
between rank 1 and 2
(γ-mod-uSVP2?).

• Go to higher rank:
mod-NTRUn,m,
mod-uSVPn,m.

• Other structured
problems e.g.,
mod-LIP.

Links to Number Theory

• Sampling prime ideals
without factoring.

• Haar distributions on
compact sets of
modules.

• Are some fields easier?
(e.g. ζK (2) or ∆K
small...).

• Improve the error
bound on NK (·).

Other directions

• Cryptanalysis of “with
hint” assumptions.

• Real-world:
assumptions used in
socially beneficial
cryptography (e.g.
anamorphic
encryption).

• Look for weaknesses in
PQ crypto
implementations.

Thank you for your attention. I would be happy to answer your questions.
Pour ma famille : c’est un bon moment pour fuir.
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Extra Frames



Rounding Module in KR

The “good basis” is randomized, but not the “bad” one.

Basis Short vector(
b̃11 b̃12
b̃21 b̃22

)
∈ KR

2×2 s̃ =

[
ũ
ṽ

]

(M∨)2 ∋ (λI + ε)× ↓ (λI + ε)× ↓(
b11 b12
b21 b22

)
∈ OK

2×2 s = (λI + ε) s̃ ∈ OK
2

Lemma (definition of the dual)

If u, v ∈ M∨, then [u, v ]T · M ⊂ OK
2.

Then take HNF.
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NTRU

We work with elements of OK = Z[X ]/(X n + 1) for n = 2r .

Definition (NTRUq)

Let f , g ∈ OK with coefficients ≪ √q and f invertible mod q.
Given h ∈ OK such that f · h = g mod q, find a small multiple of (f , g).

Proposed first in [HPS98].
Used in NIST’s post-quantum standardization
process: NTRU and NTRUPrime.

Advantages:
• Small keys.
• Fast encryption/decryption (much faster

than RSA).
• Old.

Joël Felderhoff Hardness of Structured Lattice problems for Post-Quantum Cryptography 26/11/2024 34 / 34



The NTRU module

Given h ∈ OK , the set of solutions for (f , g) is

M =
{
(f0, g0)

T ∈ OK
2, f0 · h = g0 mod q

}
This is a module generated by the matrix

B =

(
1 0
h q

)
Solving NTRU is finding a short non-zero vector in M.

Big gap: NTRU is an instance of mod-uSVP2

λ1(M) ≤ ∥(f , g)T∥ ≪ √q versus λ2(M) ≥ det(B)/λ1 ≫ √q.
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What does “well chosen” mean?

1. |BA,B
⋂
a| does not depend on a (too much).

2. Vol(Ln(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].
3. Its elements must be balanced.

Balanced elements (for Minkowski embedding)

x ∈ K is balanced if for all i ,
1
η
≤ xi∏

j x1/d
j

≤ η.

This is the same as x ≈ N (x)1/d · (1, . . . , 1).

In [BDPW20]: B∞(r): verifies items 1 and 2 but not 3!
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Our shape

Reminder: conditions for being well chosen:
1. |BA,B

⋂
a| does not depend on a (too much).

2. Vol(Ln(BA,B)
⋂
{
∑

xi = t}) is constant for t ∈ [A,B].
3. Its elements are balanced.

Bη
A,B =

{
x ∈ KR, |N (x)| ∈ [A,B],

∥∥∥∥Ln( x
N (x)1/d

)∥∥∥∥
2
≤ log(η)

}
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