TUTORIAL 9

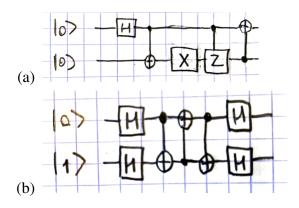
1 Some Small Calculations

1. Give the probability of each outcome when you measure $|\varphi\rangle$ in basis \mathcal{B} :

(a)
$$|\varphi\rangle = \frac{|0\rangle + i|1\rangle}{\sqrt{2}}$$
 and $\mathcal{B} = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}, \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$.

(b)
$$|\varphi\rangle = \frac{|00\rangle + (1-i)|10\rangle - |11\rangle}{2}$$
 and $\mathcal{B} = \left(|00\rangle, |01\rangle, \frac{|10\rangle + |11\rangle}{\sqrt{2}}, \frac{|10\rangle - |11\rangle}{\sqrt{2}}\right)$.

2. Compute the probability of measuring 1 on the first qubit of the following circuits:



3. Using a circuit computing $U_f^{\oplus}: |x\rangle|a\rangle|0\rangle \mapsto |x\rangle|a\oplus f(x)\rangle|0\rangle$, build a circuit that computes $Z_f: |x\rangle|0\rangle \mapsto (-1)^{f(x)}|x\rangle|0\rangle$.

2 Simon's Problem Generalized

Consider a function $f: \{0,1\}^n \to \{0,1\}^n$ with the promise that there exists a vector subspace V of $\{0,1\}^n$ (seen as a vector space over \mathbb{F}_2) such that:

$$\forall x, y \in \{0, 1\}^n, \ f(y) = f(x) \Leftrightarrow \exists v \in V, x = y + v \ .$$

- 1. Recall Simon's algorithm circuit and compute its final state.
- 2. With $V = \operatorname{span}(b_1, \dots, b_c)$, prove the following equality:

$$\sum_{v \in V} (-1)^{v \cdot y} = \prod_{i=1}^{c} (1 + (-1)^{b_i \cdot y}).$$

3. Show that one run of Simon's algorithm outputs $x \in \{0,1\}^n$ such that x is orthogonal to V $(\forall y \in V, x \cdot y = 0 \mod 2)$.

Hint: Measure first the n first qubits: it won't change the result of the measurement on the n last qubits, but the analysis will be easier.

Remark. The usual version of Simon's Problem is when $V = \{0, a\}$ for some $a \in \{0, 1\}^n$.

3 Superdense Coding

In this exercise, we will have two actors, Alice and Bob. Alice has two classical bits of information $(b_0, b_1) \in \{0, 1\}^2$ and she want to send them to Bob.

- 1. (informal) What is the minimum number of classical bits that Alice has to send to Bob in order to communicate him (b_0, b_1) ?
- 2. Now suppose that Alice and Bob share an entangled **EPR pair** (or **Bell pair**), that is to say there is a quantum state $|\phi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$ such that the first qubit is owned by Alice (she can only perform operations of the form $U \otimes I$ on $|\phi\rangle$) and the second qubit is owned by Bob. Alice is going to perform operations on her qubit and send it to Bob. If $b_1 = 1$, she applies X (bit flip) and then if $b_0 = 1$ she applies Z (phase flip), she send her part of the qubit back to Bob. Explain how Bob can recover the values of b_0 and b_1 using $|\phi\rangle$.

