TUTORIAL 8

1 Minimum of a List

You have a set of N numbers (N can be written on n bits) x_0, \ldots, x_{N-1} than can be encoded on b bits and an access to a gate $U_x|i\rangle|y\rangle \rightarrow |i\rangle|y \oplus x_i\rangle$. We denote $[N] = \{0, \ldots, N-1\}$.

In the following, we are going to use the "unknown target" version of Grover algorithm: UNK-GROVER. This is a version of Grover that finds a marked element in a list of N elements, and makes $O(\sqrt{N/r})$ queries to the elements of the list where r is the (unknown) number of marked elements. UNK-GROVER succeeds with probability $\geq 2/3$ (that we can amplify).

- 1. Let $i \in [N]$. Explain how to adapt UNK-GROVER to find $j \in [N]$ such that $x_i < x_j$ if it exists. How many queries to U_x does your algorithm makes?
- 2. We are going to study the following algorithm:

Algorithm 1 Find-Min	
$i \leftarrow U([N]).$	
while 1 do	
Find j such that $x_j < x_i$ with UNK-GROVER.	
If it is impossible, return <i>i</i> .	
Else, $i \leftarrow j$.	
end while	

- (a) How many calls to U_x makes algorithm 1 in the worst case?
- (b) Show that if x_j is the element of rank r, the probability that j is picked from the algorithm at some point is 1/r. *Hint: induction on* N.
- (c) Compute an upper bound on the expected number of queries to U_x made by algorithm 1.
- (d) Conclude by proposing a quantum algorithm doing $O(\sqrt{N})$ calls to U_x that find a minimum in the x_i with probability $\geq 2/3$. *Hint: Markov*.

2 QMA, quantum generalization of NP

We consider the following complexity class: we say that a promise problem $L = (L_{\text{YES}}, L_{\text{NO}})$ is in the class **QMA** if there exist a polynomial-time classical algorithm C such that C(x) is a quantum circuit realizing U_x , such that it satisfies the two following properties:

- Completeness: $x \in L_{\text{YES}} \Rightarrow \exists |\psi\rangle$ such that measuring the first qubit of $U_x |\psi\rangle \otimes |0\rangle$ gives 1 with probality $\geq \frac{2}{3}$
- Soundness: $x \in L_{NO} \Rightarrow \forall |\psi\rangle$, measuring the first qubit of $U_x |\psi\rangle \otimes |0\rangle$ gives 1 with probality $\leq \frac{1}{3}$
- 1. Show that **NP** \subseteq **QMA**.
- 2. Show that **BQP** \subseteq **QMA**.

- 3. Call QMA[c(n), s(n)] the variant of QMA where the completeness error $\frac{2}{3}$ is replaced by c(n) and the soundness error $\frac{1}{3}$ is replaced by s(n). Can you prove that QMA = QMA[c(n), s(n)] with $c(n) s(n) \ge \frac{1}{p(n)}$ for a positive polynomial p? We will nonetheless assume this result for this exercise.
- 4. Recall that the k-LOCAL HAMILTONIAN problem takes as input the description of $H = \sum_{j=1}^{r} H_j[S_j]$ acting on $(\mathbb{C}^2)^{\otimes n}$, with H_j k-local and $\operatorname{sp}(H_j) \subseteq \{0,1\}$ (so H_j is a projector), and parameters 0 < a < b with $b - a \ge \frac{1}{\operatorname{poly}(n)}$. The goal is to output 1 if $\lambda_{\min}(H) \le a$ and 0 if $\lambda_{\min}(H) \ge b$. We want to show that k-LOCAL HAMILTONIAN is in **QMA**. We consider the following quantum algorithm:
 - Sample j uniformly in $\{1, \ldots, r\}$
 - We can decompose $H_j = \sum_{i=1}^{n_j} |b_i^j\rangle \langle b_i^j|$, with $(|b_i^j\rangle)_{i\in[n]}$ basis of $(\mathbb{C}^2)^{\otimes n}$. Apply the change of basis V_j such that $V_j^{\dagger} = (|b_i^j\rangle)_{i\in[n]}$, measure in the standard basis. If the output $i \notin [n_j]$, then output 1; else output 0.
 - (a) Justify why we can construct such a quantum algorithm with a polynomial-size quantum circuit using ancillas and measuring only its first output.
 - (b) On input $|\eta\rangle$, first compute the probability that given *j*, you get 1. Then prove that the global probability of getting 1 is $1 \frac{\langle \eta | H | \eta \rangle}{r}$.
 - (c) Find a lower bound on the probability of outputting 1 in the completeness part of **QMA** for the k-LOCAL HAMILTONIAN using the certificate $|\eta\rangle$, where $|\eta\rangle$ is an eigenvector of H for eigenvalue $\lambda_{\min}(H)$, under the hypothesis that $\lambda_{\min}(H) \leq a$.
 - (d) Find an upper bound on the probability of outputting 1 in the soundness part of **QMA** for the k-LOCAL HAMILTONIAN under the hypothesis that $\lambda_{\min}(H) \ge b$.

(e) Conclude.

Remark. The k-LOCAL HAMILTONIAN is in fact **QMA**-complete for $k \ge 2$.

3 Matrix Exponentials

- 1. Compute $\exp(iX)$, $\exp(iZ)$, $\exp(iX) \cdot \exp(iZ)$, $\exp(i(X + Z))$.
- 2. Tail-cut of the matrix exponential. Assume that A is a matrix of norm ≤ 1 . Let $0 < \varepsilon < 0.99$ and t > 0. Show that there exists a constant c > 0 independent of A, ε and t such that:

$$\left\|\sum_{k=0}^{c\cdot(t+\log(1/\varepsilon))}\frac{(itA)^k}{k!} - \exp\left(itA\right)\right\| < \varepsilon .$$

You can use freely that $k! \leq \left(\frac{k}{e}\right)^k$.

3. What tail-cut bound do you have to take if $||A|| \le 1$ is not supposed anymore?