1 Homework 4

- 1. Let $U =$ $\begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$. Write a matrix representation of $U[1]$ and $U[2]$ for $n = 2$. For $n = 3$, write a matrix representation of CNOT[3, 1].
- 2. Let $A = \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} -i & -1 \end{pmatrix}$ 1 i \setminus and $B =$ $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Which 2-qubits gate can you apply on the first qubits at the end of the circuit $\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n\qquad\n\begin{array}{ccc}\n\hline\n\end{array}\n$

2 Gate Sets for Quantum Circuits

The aim of this exercise is to prove the following theorem:

Theorem 2.1. *The set of all two-qubits unitary operators allows the realization of an arbitrary unitary operator.*

Remark. One-qubit unitaries operators are particular cases of two-qubits unitary operators.

Thanks to the homework, we already know that we can realize a Toffoli gate with only two-qubits unitaries. This will be a useful tool in the next parts of the proof.

2.1 Controled Unitaries

Recall that $\Lambda^k(U)$ denotes the k-controlled unitary U, which is defined by:

$$
\Lambda^k(U) \left(|x_1 x_2 ... x_k \rangle \otimes |\psi \rangle \right) := \begin{cases} & |x_1 x_2 ... x_k \rangle \otimes U |\psi\rangle \text{ if } x_1 \wedge x_2 \wedge ... \wedge x_k = 1 ,\\ & |x_1 x_2 ... x_k \rangle \otimes |\psi\rangle \text{ otherwise .} \end{cases}
$$

The aim of this part is to prove that we can realize $\Lambda^k(U)$, with U acting on one qubit, using only twoqubits unitaries.

- 1. Design a classical circuit that computes $x_1 \wedge x_2 \wedge \ldots \wedge x_k$. What is its size? Its depth?
- 2. Design a quantum circuit A that computes $x_1 \wedge x_2 \wedge \ldots \wedge x_k$, ie. that $A|x_1x_2 \ldots x_k\rangle \otimes |0\rangle^{\otimes (N-k)} =$ $|G(x_1x_2...x_k)\rangle\otimes|x_1\wedge x_2\wedge...\wedge x_k\rangle$, with $|G(x_1x_2...x_k)\rangle$ acting on $N-1$ qubits is some garbage state, using only Toffoli and NOT gates. What is its size? Its depth?
- 3. Design an efficient quantum circuit that computes A^{-1} efficiently. What is its size? Its depth?
- 4. Design a quantum circuit that computes $\Lambda^k(U)$ using only two-qubits unitaries, with the help of ancillas, ie. some circuit L such that:

$$
L\left(\ket{x_1x_2\ldots x_k}\otimes\ket{\psi}\otimes\ket{0}^{\otimes (N-1-k)}=\left(\Lambda^k(U)\left(\ket{x_1x_2\ldots x_k}\otimes\ket{\psi}\right)\right)\otimes\ket{0}^{\otimes (N-1-k)}.
$$

 \Box

2.2 Almost Diagonal Unitaries

The aim of this part is to show that unitaries U on \mathbb{C}^{2^n} of the form Diag $\left(1,\ldots,1,\right)$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 1, ..., 1 \setminus can be realized using only two-qubits unitaries.

- 1. What can you say about $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$?
- 2. Write $\Lambda^{n-1}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right)$ in matrix form. Show that there exists a permutation matrix P such that:

$$
U = P^{-1} \Lambda^{n-1} \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) P.
$$

- 3. Design a quantum circuit that computes P and another that computes P^{-1} using only two-qubits unitaries. What are their sizes? Their depths?
- 4. Design a quantum circuit that computes Diag $(1, \ldots, 1,$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 1, ..., 1 \setminus . What is its size? Its depth?

2.3 General form of an Arbitrary Unitary

Recall the following lemma seen during last lecture:

Lemma 2.2. Any unitary operator U on \mathbb{C}^M can be written as a product of $\mathcal{O}(M^2)$ unitary matrices of the form Diag $\Big(1,\ldots,1,$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 1, ..., 1 \setminus *.*

1. Prove theorem [2.1,](#page-0-0) using ancillas. What is the size of the circuit? Its depth?

3 Quantum 1-Machine

You have a device that outputs only $|0\rangle$. You can use this device several times, and measure in any basis. How many calls to the device do you need to get a $|1\rangle$?

4 Simon's Problem Generalized

Consider a function $f : \{0,1\}^n \to \{0,1\}^n$ with the promise that there exists a vector subspace V of $\{0,1\}^n$ (seen as a vector space over \mathbb{F}_2) such that:

$$
\forall x, y \in \{0, 1\}^n, f(y) = f(x) \Leftrightarrow \exists v \in V, x = y + v.
$$

Show that one run of Simon's algorithm output $x \in \{0,1\}^n$ such that x is orthogonal to V $(\forall y \in V, x \cdot y = 0 \text{ MOD } 2).$

Remark: the usual version of Simon's Problem is when $V = \{0, a\}$ *for some* $a \in \{0, 1\}^n$ *.*