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TUTORIAL 4

1 Homework 4

1. Let U =

(
u00 u01
u10 u11

)
. Write a matrix representation of U [1] and U [2] for n = 2. For n = 3, write a

matrix representation of CNOT[3, 1].

2. Let A = 1√
2

(
−i −1
1 i

)
and B =

(
0 1
−1 0

)
. Which 2-qubits gate can you apply on the first qubits

at the end of the circuit to get a Toffoli gate?

2 Gate Sets for Quantum Circuits

The aim of this exercise is to prove the following theorem:

Theorem 2.1. The set of all two-qubits unitary operators allows the realization of an arbitrary unitary
operator.

Remark. One-qubit unitaries operators are particular cases of two-qubits unitary operators.
ut

Thanks to the homework, we already know that we can realize a Toffoli gate with only two-qubits
unitaries. This will be a useful tool in the next parts of the proof.

2.1 Controled Unitaries

Recall that Λk(U) denotes the k-controlled unitary U , which is defined by:

Λk(U) (|x1x2 . . . xk〉 ⊗ |ψ〉) :=

{
|x1x2 . . . xk〉 ⊗ U |ψ〉 if x1 ∧ x2 ∧ . . . ∧ xk = 1 ,

|x1x2 . . . xk〉 ⊗ |ψ〉 otherwise .

The aim of this part is to prove that we can realize Λk(U), with U acting on one qubit, using only two-
qubits unitaries.

1. Design a classical circuit that computes x1 ∧ x2 ∧ . . . ∧ xk. What is its size? Its depth?

2. Design a quantum circuit A that computes x1 ∧ x2 ∧ . . . ∧ xk, ie. that A|x1x2 . . . xk〉 ⊗ |0〉⊗(N−k) =
|G(x1x2 . . . xk)〉⊗|x1∧x2∧ . . .∧xk〉, with |G(x1x2 . . . xk)〉 acting onN−1 qubits is some garbage
state, using only Toffoli and NOT gates. What is its size? Its depth?

3. Design an efficient quantum circuit that computes A−1 efficiently. What is its size? Its depth?

4. Design a quantum circuit that computes Λk(U) using only two-qubits unitaries, with the help of
ancillas, ie. some circuit L such that:

L
(
|x1x2 . . . xk〉 ⊗ |ψ〉 ⊗ |0〉⊗(N−1−k)

)
=
(
Λk(U) (|x1x2 . . . xk〉 ⊗ |ψ〉)

)
⊗ |0〉⊗(N−1−k) .



2.2 Almost Diagonal Unitaries

The aim of this part is to show that unitaries U on C2n of the form Diag
(

1, . . . , 1,

(
a b
c d

)
, 1, . . . , 1

)
can be realized using only two-qubits unitaries.

1. What can you say about
(
a b
c d

)
?

2. Write Λn−1
((

a b
c d

))
in matrix form. Show that there exists a permutation matrix P such that:

U = P−1Λn−1
((

a b
c d

))
P .

3. Design a quantum circuit that computes P and another that computes P−1 using only two-qubits
unitaries. What are their sizes? Their depths?

4. Design a quantum circuit that computes Diag
(

1, . . . , 1,

(
a b
c d

)
, 1, . . . , 1

)
. What is its size? Its

depth?

2.3 General form of an Arbitrary Unitary

Recall the following lemma seen during last lecture:

Lemma 2.2. Any unitary operator U on CM can be written as a product of O(M2) unitary matrices of

the form Diag
(

1, . . . , 1,

(
a b
c d

)
, 1, . . . , 1

)
.

1. Prove theorem 2.1, using ancillas. What is the size of the circuit? Its depth?

3 Quantum 1-Machine

You have a device that outputs only |0〉. You can use this device several times, and measure in any basis.
How many calls to the device do you need to get a |1〉?

4 Simon’s Problem Generalized

Consider a function f : {0, 1}n → {0, 1}n with the promise that there exists a vector subspace V of
{0, 1}n (seen as a vector space over F2) such that:

∀x, y ∈ {0, 1}n, f(y) = f(x)⇔ ∃v ∈ V, x = y + v .

Show that one run of Simon’s algorithm output x ∈ {0, 1}n such that x is orthogonal to V
(∀y ∈ V, x · y = 0 MOD 2).

Remark: the usual version of Simon’s Problem is when V = {0, a} for some a ∈ {0, 1}n.
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