TUTORIAL 13

1 Homework 10

1. Assume W is such that $\exists x, x' \in \mathcal{X}, \exists y \in \mathcal{Y}, W(y|x) \neq W(y|x')$. Show that C(W) > 0.

A: Recall that $C(W) = \max_{P_X} I(X : Y)$, with $P_{XY}(x, y) = P_X(x)W(y|x)$, and that I(X : Y) = 0 iff X and Y are independent. It is thus enough to find $P_X(x)$ such that X and Y are not independent.

We have that $P_Y(y) = \sum_{x' \in \mathcal{X}} P_X(x')W(y|x')$, we want to find x, y such that it is different from $P_Y(y|x) = \frac{P_{XY}(x,y)}{P_X(x)} = W(y|x)$ if $P_X(x) \neq 0$. Let us take $P_X(x) = \frac{1}{|\mathcal{X}|}$. Thus, it is enough to find x, y such that $W(y|x) \neq \sum_{x' \in \mathcal{X}} P_X(x')W(y|x') = \frac{1}{|\mathcal{X}|} \sum_{x'} W(y|x')$. Let us fix y given by hypothesis, and take $x = \operatorname{argmax}_x W(y|x)$. Then we have by hypothesis that there exists x' such that W(y|x) > W(y|x'), and for all x'' we have $W(y|x) \geq W(y|x')$, so we have $W(y|x) > \frac{1}{|\mathcal{X}|} \sum_{x'} W(y|x')$. Thus X and Y are not independent, so $C(W) \geq I(X : Y) > 0$.

2. Show that if C corrects E, then $\exists D : N \to C$ s.t. $\forall x \in C, \forall y \in N, (x, y) \in E \Rightarrow D(y) = x$.

A: Let us define D in the following way:

$$D(y) := \begin{cases} x & \text{if } x \in C \text{ such that } (x, y) \in E, \\ x_0 & \text{fixed otherwise.} \end{cases}$$

First D is well defined. Indeed if $x, x' \in C$ such that $(x, y), (x', y) \in E$, then since C corrects E, we have that x = x'. Then D verifies the statement: let $x \in C$ and $y \in N$ such that $(x, y) \in E$, then by definition of D we have that D(y) = x.

2 Parity check matrix

Let C be a $[n, k, d]_2$ -linear code and $G \in \mathbb{F}_2^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_2^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_2^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_2^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank(H) = n - k.

A: If H is a parity check matrix, then $xGH^T = 0$ for all x, so $GH^T = 0$. Moreover, we know that $Ker(H^T) = C$ is of dimension k, so H is of rank n - k.

Reciprocally, if $GH^T = 0$, then $cH^T = 0$ for all $c \in C$. So $C \subset Ker(H^T)$, but C is of dimension k and Ker(C) is also of dimension k, so we have an equality $C = Ker(H^T)$, and H is a parity check matrix of C.

2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k|P]$ for some $P \in \mathbb{F}_2^{k \times (n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).

A: This is Gaussian elimination (with a permutation of the columns of G if some column is all zero — this is equivalent to permuting the coefficients of the vectors x).

3. Construct a parity check matrix from G'.

A: The matrix $H = [-P^T | I_{n-k}]$ satisfies $GH^T = -P + P = 0$ and is of rank n - k. So, H is a parity check matrix.

4. Construct a parity check matrix of the code given by the generator matrix $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2 .

A: From question 2, we have an equivalent representation of G as $G' = [I_k|P] = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$ So, the matrix H is $H = [-P^T|I_{n-k}] = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$

3 Hamming bound

- 1. Let $0 \le p \le \frac{1}{2}$. Give a formula for $\operatorname{Vol}_2(r, n) = |B_2(0, r)|$ the size of the ball in \mathbb{F}_2^n of radius $r = p \cdot n$ where the distance considered is the Hamming weight.
- 2. Prove the following bound: for any $(n, k, d)_2$ code $C \subseteq (\Sigma)^n$ with $|\Sigma| = 2$,

$$k \le n - \log_2\left(\operatorname{Vol}_2\left(\frac{d-1}{2}, n\right)\right)$$

3. Define the 2-ary entropy function: $H_2(x) = -x \log_2 x - (1-x) \log_2(1-x)$ defined for $x \in [0,1]$. Prove that for large enough n, we have: $\operatorname{Vol}_2(pn, n) \leq 2^{nH_2(p)}$.

Remark. Using Stirling's approximation, we can show that: $Vol_2(pn, n) \ge 2^{nH_2(p)-o(n)}$ (exercise!).

4 Gilbert-Varshamov bound

1. Let $1 \le d \le n$. Show that there exists a $(n, k, d')_2$ -code for some $d' \ge d$, such that

$$k \ge n - \log_2\left(\operatorname{Vol}_2\left(d - 1, n\right)\right)$$

A: Greedy algorithm: start with empty C and then as long as it is possible, add a codeword c such that $d(c, C) \ge d$. At the end of the procedure, you have a code such that $\{0,1\}^n \subseteq \bigcup_{c \in C} B_2(c,d-1)$. This gives $2^n \le \sum_{c \in C} \operatorname{Vol}_2(d-1,n) = |C| \cdot \operatorname{Vol}_2(d-1,n)$.

5 Linear Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_2^k$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_2 , show that the vector $\mathbf{m}\mathbf{G}$ is uniformly distributed over \mathbb{F}_2^n .

A: As $\mathbf{m} = (m_1, \dots, m_k)$ is non zero, at least one of the m_i is non zero. Assume without loss of generality that m_1 is non zero. Let $\mathbf{x} = (x_1, \dots, x_n) = \mathbf{mG}$. We have, for all $1 \le i \le n$:

$$\mathbf{x}_i = \sum_{j=1}^k m_j g_{j,i} = m_1 g_{1,i} + c_i$$

As the $g_{i,j}$ are uniform and independent, the $m_1g_{1,i}$ are also uniform and independent (because m_1 is non zero and then $g \mapsto gm_1$ is a bijection).

We write $u_i = m_1 g_{1,i}$ and $\mathbf{u} = (u_1, \dots, u_n)$. We have that \mathbf{u} is uniform in \mathbb{F}_q^n and then $\mathbf{x} = (\mathbf{u} + (c_1, c_2, \dots, c_n))$ is also uniform.

2. Let $k = (1 - H_2(\delta) - \varepsilon)n$, with $\delta = d/n$. Show that there exists a $k \times n$ matrix G such that

$$\forall \mathbf{m} \in \mathbb{F}_2^k \setminus \{\mathbf{0}\}, |\mathbf{m}\mathbf{G}| \ge d$$

A: Take a uniformly random $k \times n$ matrix **G** over \mathbb{F}_q . Then thanks to question 1, we have that for any $\mathbf{m} \neq 0$, **mG** is a uniformely distributed over \mathbb{F}_q^n . In particular:

$$\mathbf{P}(|\mathbf{mG}| < d) = \frac{\operatorname{Vol}_q(d-1, n)}{q^n}$$

Using the bound from Exercise 3, this probability is upper bounded by $q^{n(H_q(\delta)-1)}$. By union bound, we have:

$$\mathbf{P}(\exists \mathbf{m} \in \mathbb{F}_q^k \setminus \{0\}, \ |\mathbf{m}\mathbf{G}| < d) \le q^k q^{n(H_q(\delta)-1)}$$
$$= q^{n(1-H_q(\delta)-\varepsilon)+n(H_q(\delta)-1)}$$
$$= q^{-\varepsilon n}$$

We have $2^{-\varepsilon n} < 1$ because $q \ge 2$ and $\varepsilon n > 0$.

Hence, $\mathbf{P}(\exists \mathbf{m} \in \mathbb{F}_2^k \setminus \{0\}, |\mathbf{m}\mathbf{G}| < d) < 1$. *Thus, it means that there exists* \mathbf{G} *such that for all* $\mathbf{m} \neq 0$ *we have* $|\mathbf{m}\mathbf{G}| \ge d$.

3. Show that G has full rank (i.e., it has dimension at least $k = (1 - H_2(\delta) - \varepsilon)n$)

A: We know that for all $\mathbf{m} \in \mathbb{F}_2^k \setminus \{0\}$, we have $|\mathbf{m}\mathbf{G}| \ge d$. In particular $\mathbf{m}\mathbf{G} \ne 0$. Hence $Ker(\mathbf{G}) = \{0\}$, thus \mathbf{G} has full rank by the rank-nullity theorem.