TUTORIAL 13

1 Homework 10

1. Assume W is such that $\exists x, x' \in \mathcal{X}, \exists y \in \mathcal{Y}, W(y|x) \neq W(y|x')$. Show that $C(W) > 0$.

A: Recall that $C(W) = \max_{P_X} I(X:Y)$, with $P_{XY}(x, y) = P_X(x)W(y|x)$, and that $I(X:Y) = 0$ iff X and Y are *independent. It is thus enough to find* $P_X(x)$ *such that* X *and* Y *are not independent.*

We have that $P_Y(y) = \sum_{x' \in \mathcal{X}} P_X(x') W(y|x')$, we want to find x, y such that it is different from $P_Y(y|x)$ = $\frac{P_{XY}(x,y)}{P_X(x)} = W(y|x)$ if $P_X(x) \neq 0$. Let us take $P_X(x) = \frac{1}{|X|}$. Thus, it is enough to find x, y such that $W(y|x) \neq 0$ $\sum_{x'\in\mathcal{X}}P_X(x')W(y|x') = \frac{1}{|\mathcal{X}|}\sum_{x'}W(y|x')$. Let us fix y given by hypothesis, and take $x = argmax_x W(y|x)$. Then *we have by hypothesis that there exists* x' such that $W(y|x) > W(y|x')$, and for all x'' we have $W(y|x) \geq W(y|x'')$, *so we have* $W(y|x) > \frac{1}{|X|} \sum_{x'} W(y|x')$. Thus X and Y are not independent, so $C(W) \ge I(X:Y) > 0$.

2. Show that if C corrects E, then $\exists D : N \to C$ s.t. $\forall x \in C, \forall y \in N, (x, y) \in E \Rightarrow D(y) = x$.

A: Let us define D *in the following way:*

$$
D(y) := \begin{cases} x & \text{if } x \in C \text{ such that } (x, y) \in E, \\ x_0 & \text{fixed otherwise.} \end{cases}
$$

First D is well defined. Indeed if $x, x' \in C$ such that $(x, y), (x', y) \in E$, then since C corrects E, we have that $x = x'$. *Then* D verifies the statement: let $x \in C$ and $y \in N$ such that $(x, y) \in E$, then by definition of D we have that $D(y) = x$.

2 Parity check matrix

Let C be a $[n, k, d]_2$ -linear code and $G \in \mathbb{F}_2^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_2^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_2^{(n-k)\times n}$ $\sum_{n=2}^{(n-k)\times n}$ such that for all $c \in \mathbb{F}_2^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank $(H) = n - k$.

 $A\colon$ If H is a parity check matrix, then $xG H^T=0$ for all x , so $G H^T=0$. Moreover, we know that $Ker(H^T)=C$ is of *dimension* k *, so* H *is of rank* $n - k$ *.*

Reciprocally, if $GH^T = 0$, then $cH^T = 0$ for all $c \in C$. So $C \subset \text{Ker}(H^T)$, but C is of dimension k and $\text{Ker}(C)$ is also *of dimension k, so we have an equality* $C = Ker(H^T)$, and H is a parity check matrix of C.

2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k|P]$ for some $P \in \mathbb{F}_2^{k \times (n-k)}$ $2^{k \times (n-k)}$. (If *n* is not optimal, we may have to permute the coefficients of the vectors).

A: This is Gaussian elimination (with a permutation of the columns of G *if some column is all zero — this is equivalent to permuting the coefficients of the vectors* x*).*

3. Construct a parity check matrix from G' .

A: The matrix $H = [-P^T | I_{n-k}]$ satisfies $GH^T = -P + P = 0$ and is of rank $n - k$. So, H is a parity check matrix.

4. Construct a parity check matrix of the code given by the generator matrix $G =$ $\begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2 .

A: From question 2, we have an equivalent representation of G as $G' = [I_k|P] = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$ *So, the matrix* H is $H = [-P^T | I_{n-k}] =$ $\sqrt{ }$ \mathcal{L} 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 \setminus \perp

3 Hamming bound

- 1. Let $0 \le p \le \frac{1}{2}$ $\frac{1}{2}$. Give a formula for $\text{Vol}_2(r, n) = |B_2(0, r)|$ the size of the ball in \mathbb{F}_2^n of radius $r = p \cdot n$ where the distance considered is the Hamming weight.
- 2. Prove the following bound: for any $(n, k, d)_2$ code $C \subseteq (\Sigma)^n$ with $|\Sigma| = 2$,

$$
k \le n - \log_2 \left(\text{Vol}_2 \left(\frac{d-1}{2}, n \right) \right)
$$

3. Define the 2-ary entropy function: $H_2(x) = -x \log_2 x - (1-x) \log_2(1-x)$ defined for $x \in [0,1]$. Prove that for large enough *n*, we have: $\text{Vol}_2(pn, n) \leq 2^{nH_2(p)}$.

Remark. Using Stirling's approximation, we can show that: $\text{Vol}_2(pn, n) \geq 2^{nH_2(p) - o(n)}$ (exercise!).

4 Gilbert-Varshamov bound

1. Let $1 \leq d \leq n$. Show that there exists a $(n, k, d')_2$ -code for some $d' \geq d$, such that

$$
k \ge n - \log_2(\text{Vol}_2(d-1, n))
$$

A: Greedy algorithm: start with empty C and then as long as it is possible, add a codeword c such that $d(c, C) \geq d$. At the end of the procedure, you have a code such that $\{0,1\}^n \subseteq \bigcup_{c \in C} B_2(c,d-1)$. *This gives* $2^n \le \sum_{c \in C} \text{Vol}_2(d-1, n) = |C| \cdot \text{Vol}_2(d-1, n)$.

5 Linear Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $m \in \mathbb{F}_2^k$ and a uniformly random $k \times n$ matrix G over \mathbb{F}_2 , show that the vector \mathbf{m} G is uniformly distributed over \mathbb{F}_2^n .

 $A\colon A s\ \mathbf{m}=(m_1,\ldots,m_k)$ is non zero, at least one of the m_i is non zero. Assume without loss of generality that m_1 is non *zero. Let* $\mathbf{x} = (x_1, \dots, x_n) = \mathbf{m}$ *G. We have, for all* $1 \leq i \leq n$ *:*

$$
\mathbf{x}_i = \sum_{j=1}^k m_j g_{j,i} = m_1 g_{1,i} + c_i
$$

As the $g_{i,j}$ are uniform and independent, the $m_1g_{1,i}$ are also uniform and independent (because m_1 is non zero and then $g \mapsto gm_1$ *is a bijection*).

We write $u_i = m_1 g_{1,i}$ *and* $\mathbf{u} = (u_1, \dots, u_n)$ *.* We have that **u** is uniform in \mathbb{F}_q^n and then $\mathbf{x} = (\mathbf{u} + (c_1, c_2, \dots, c_n))$ is also uniform.

2. Let $k = (1 - H_2(\delta) - \varepsilon)n$, with $\delta = d/n$. Show that there exists a $k \times n$ matrix G such that

$$
\forall \mathbf{m} \in \mathbb{F}_2^k \setminus \{\mathbf{0}\}, |\mathbf{m}\mathbf{G}| \geq d
$$

A: Take a uniformly random $k \times n$ *matrix* G *over* \mathbb{F}_q *. Then thanks to question 1, we have that for any* $m \neq 0$ *,* mG *is a uniformely distributed over* F n q *. In particular:*

$$
\mathbf{P}(|\mathbf{mG}| < d) = \frac{\text{Vol}_q(d-1, n)}{q^n}
$$

Using the bound from Exercise 3, this probability is upper bounded by $q^{n(H_q(\delta)-1)}$ *. By union bound, we have:*

$$
\mathbf{P}(\exists \mathbf{m} \in \mathbb{F}_q^k \setminus \{0\}, |\mathbf{m} \mathbf{G}| < d) \le q^k q^{n(H_q(\delta) - 1)}
$$

= $q^{n(1 - H_q(\delta) - \varepsilon) + n(H_q(\delta) - 1)}$
= $q^{-\varepsilon n}$

We have $2^{-\varepsilon n} < 1$ *because* $q \ge 2$ *and* $\varepsilon n > 0$ *.*

Hence, $P(\exists m \in \mathbb{F}_2^k \setminus \{0\}, |\mathbf{mG}| < d) < 1$. Thus, it means that there exists G such that for all $\mathbf{m} \neq 0$ we have $|\mathbf{mG}| \geq d$.

3. Show that G has full rank (i.e., it has dimension at least $k = (1 - H_2(\delta) - \varepsilon)n$)

A: We know that for all $m \in \mathbb{F}_2^k \setminus \{0\}$, we have $|mG| \ge d$. In particular $mG \ne 0$. Hence Ker $(G) = \{0\}$, thus G has *full rank by the rank-nullity theorem.*