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TUTORIAL 13

1 Homework 10

1. Assume W is such that ∃x, x′ ∈ X ,∃y ∈ Y ,W (y|x) 6= W (y|x′). Show that C(W ) > 0.

A: Recall that C(W ) = maxPX
I(X : Y ), with PXY (x, y) = PX(x)W (y|x), and that I(X : Y ) = 0 iff X and Y are

independent. It is thus enough to find PX(x) such that X and Y are not independent.

We have that PY (y) =
∑
x′∈X PX(x′)W (y|x′), we want to find x, y such that it is different from PY (y|x) =

PXY (x,y)
PX(x) = W (y|x) if PX(x) 6= 0. Let us take PX(x) = 1

|X | . Thus, it is enough to find x, y such that W (y|x) 6=∑
x′∈X PX(x′)W (y|x′) = 1

|X |
∑
x′ W (y|x′). Let us fix y given by hypothesis, and take x = argmaxxW (y|x). Then

we have by hypothesis that there exists x′ such that W (y|x) > W (y|x′), and for all x′′ we have W (y|x) ≥ W (y|x′′),
so we have W (y|x) > 1

|X |
∑
x′ W (y|x′). Thus X and Y are not independent, so C(W ) ≥ I(X : Y ) > 0.

2. Show that if C corrects E, then ∃D : N → C s.t. ∀x ∈ C, ∀y ∈ N, (x, y) ∈ E ⇒ D(y) = x.

A: Let us define D in the following way:

D(y) :=

{
x if x ∈ C such that (x, y) ∈ E,
x0 fixed otherwise.

First D is well defined. Indeed if x, x′ ∈ C such that (x, y), (x′, y) ∈ E, then since C corrects E, we have that x = x′.
Then D verifies the statement: let x ∈ C and y ∈ N such that (x, y) ∈ E, then by definition of D we have that
D(y) = x.

2 Parity check matrix

Let C be a [n, k, d]2-linear code and G ∈ Fk×n
2 be a generator matrix. That is, C = {xG, x ∈ Fk

2}. We
call a parity check matrix of the code C a matrix H ∈ F(n−k)×n

2 such that for all c ∈ Fn
2 we have cHT = 0

if and only if c ∈ C. The objective of this exercise is to show how to construct a parity check matrix from
a generator matrix.

1. Show that H is a parity check matrix if and only if GHT = 0 and rank(H) = n− k.

A: If H is a parity check matrix, then xGHT = 0 for all x, so GHT = 0. Moreover, we know that Ker(HT ) = C is of
dimension k, so H is of rank n− k.

Reciprocally, if GHT = 0, then cHT = 0 for all c ∈ C. So C ⊂ Ker(HT ), but C is of dimension k and Ker(C) is also
of dimension k, so we have an equality C = Ker(HT ), and H is a parity check matrix of C.

2. Show that, from G we can construct a generator matrix G′ of the form G′ = [Ik|P ] for some
P ∈ Fk×(n−k)

2 . (If n is not optimal, we may have to permute the coefficients of the vectors).

A: This is Gaussian elimination (with a permutation of the columns of G if some column is all zero — this is equivalent to
permuting the coefficients of the vectors x).

3. Construct a parity check matrix from G′.



A: The matrix H = [−PT |In−k] satisfies GHT = −P + P = 0 and is of rank n− k. So, H is a parity check matrix.

4. Construct a parity check matrix of the code given by the generator matrix G =

(
1 1 0 1 1
1 0 1 0 1

)
in

F2.

A: From question 2, we have an equivalent representation of G as G′ = [Ik|P ] =

(
1 0 1 0 1
0 1 1 1 0

)
So, the matrix H is H = [−PT |In−k] =

1 1 1 0 0
0 1 0 1 0
1 0 0 0 1



3 Hamming bound

1. Let 0 ≤ p ≤ 1
2
. Give a formula for Vol2(r, n) = |B2(0, r)| the size of the ball in Fn

2 of radius r = p ·n
where the distance considered is the Hamming weight.

2. Prove the following bound: for any (n, k, d)2 code C ⊆ (Σ)n with |Σ| = 2,

k ≤ n− log2

(
Vol2

(
d− 1

2
, n

))
3. Define the 2-ary entropy function: H2(x) = −x log2 x − (1 − x) log2(1 − x) defined for x ∈ [0, 1].

Prove that for large enough n, we have: Vol2(pn, n) ≤ 2nH2(p).

Remark. Using Stirling’s approximation, we can show that: Vol2(pn, n) ≥ 2nH2(p)−o(n) (exercise!).

4 Gilbert-Varshamov bound

1. Let 1 <= d <= n. Show that there exists a (n, k, d′)2-code for some d′ ≥ d, such that

k ≥ n− log2 (Vol2 (d− 1, n))

A: Greedy algorithm: start with empty C and then as long as it is possible, add a codeword c such that d(c, C) ≥ d.

At the end of the procedure, you have a code such that {0, 1}n ⊆
⋃
c∈C B2(c, d− 1).

This gives 2n ≤
∑
c∈C Vol2(d− 1, n) = |C| ·Vol2(d− 1, n).

5 Linear Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on
the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector m ∈ Fk
2 and a uniformly random k × n matrix G over F2, show that the

vector mG is uniformly distributed over Fn
2 .
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A: As m = (m1, . . . ,mk) is non zero, at least one of the mi is non zero. Assume without loss of generality that m1 is non
zero. Let x = (x1, . . . , xn) = mG. We have, for all 1 ≤ i ≤ n:

xi =

k∑
j=1

mjgj,i = m1g1,i + ci

As the gi,j are uniform and independent, the m1g1,i are also uniform and independent (because m1 is non zero and then
g 7→ gm1 is a bijection).

We write ui = m1g1,i and u = (u1, . . . , un).
We have that u is uniform in Fnq and then x = (u+ (c1, c2, . . . , cn)) is also uniform.

2. Let k = (1−H2(δ)− ε)n, with δ = d/n. Show that there exists a k × n matrix G such that

∀m ∈ Fk
2 \ {0}, |mG| ≥ d

A: Take a uniformly random k × n matrix G over Fq . Then thanks to question 1, we have that for any m 6= 0, mG is a
uniformely distributed over Fnq . In particular:

P(|mG| < d) =
Volq(d− 1, n)

qn

Using the bound from Exercise 3, this probability is upper bounded by qn(Hq(δ)−1).
By union bound, we have:

P(∃m ∈ Fkq \ {0}, |mG| < d) ≤ qkqn(Hq(δ)−1)

= qn(1−Hq(δ)−ε)+n(Hq(δ)−1)

= q−εn

We have 2−εn < 1 because q ≥ 2 and εn > 0.

Hence, P(∃m ∈ Fk2 \ {0}, |mG| < d) < 1. Thus, it means that there exists G such that for all m 6= 0 we have
|mG| ≥ d.

3. Show that G has full rank (i.e., it has dimension at least k = (1−H2(δ)− ε)n)

A: We know that for all m ∈ Fk2 \ {0}, we have |mG| ≥ d. In particular mG 6= 0. Hence Ker(G) = {0}, thus G has
full rank by the rank-nullity theorem.
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