TUTORIAL 12

1 Homework 9

Show that for any $\rho \in \mathbb{C}^{d \times d}$, there exists quantum channels $C : \mathbb{C}^{d \times d} \to \mathbb{C}$ and $D : \mathbb{C} \to \mathbb{C}^{d \times d}$ such that:

$$
\Delta(D(C(\rho)), \rho) = 0.
$$

2 Shannon Channel Coding Theorem

The goal of this tutorial is to prove Shannon channel coding theorem. First, recall the definition of a code and the capacity of a channel:

Definition 2.1. *A* (n, R, δ) *code for the channel* $W = \{W(y|x)\}_{x \in \mathcal{X}, y \in \mathcal{Y}}$ *is a pair* E, D *such that:*

- *1.* $E: \{0, 1\}^{Rn} \to \mathcal{X}^n$,
- 2. $D: \mathcal{Y}^n \to \{0,1\}^{Rn}$,
- *3. With* $x^n = x_1 \dots x_n$, $y^n = y_1 \dots y_n$ and $W^n(y^n|x^n) := W(y_1|x_1)W(y_2|x_2) \dots W(y_n|x_n)$:

$$
\frac{1}{2^{Rn}} \sum_{s \in \{0,1\}^{Rn}} \sum_{y^n \in \mathcal{Y}^n : D(y^n) = s} W^n(y^n | E(s)) \ge 1 - \delta.
$$

It describes the average over all messages s *of the probability of successfully decoding* s*, using* n *independent copies of the channel* W*.*

Definition 2.2. *For a given channel* $W = \{W(y|x)\}_{x \in \mathcal{X}, y \in \mathcal{Y}}$ *, define the capacity of* W *by*:

$$
C(W) = \max_{P_X} I(X:Y) ,
$$

where the joint distribution over X, Y *is defined by* $P_{XY}(x, y) = P_X(x)W(y|x)$ *.*

Theorem 2.3 (Shannon Channel Coding Theorem). *For* $R < C(W)$, there exists a sequence of (n, R, δ_n) *codes for* W with $\delta_n \underset{n \to +\infty}{\to} 0$.

2.1 The decoder

We will assume that $R < C(W)$ is fixed. Let P_X achieving the maximum in the definition of $C(W)$, and define $P_{XY}(x, y) = P_X(x)W(y|x)$. We will first assume that the encoder E is given:

1. What is the best choice for D?

However, this expression is hard to analyse. We will rather use the following decoder:

$$
D(y^n) = \begin{cases} s & \text{if there is a unique } s \text{ such that } W^n(y^n | E(s)) \ge \alpha(n, y^n) \text{ ,} \\ s_0 & \text{otherwise.} \end{cases}
$$

where $\alpha(n, y^n)$ will be defined later.

2. Give an expression for $P_{\text{err},s}$, the probability of error for message s.

3. Prove that $P_{\text{err},s} \leq P_{\text{err},s}^1 + P_{\text{err},s}^2$, with:

$$
P_{\text{err},s}^1 := \sum_{y^n \in \mathcal{Y}^n} W^n(y^n | E(s)) \mathbf{1}_{W^n(y^n | E(s)) < \alpha(n, y^n)}
$$
\n
$$
P_{\text{err},s}^2 := \sum_{y^n \in \mathcal{Y}^n} W^n(y^n | E(s)) \sum_{s' \neq s} \mathbf{1}_{W^n(y^n | E(s')) \geq \alpha(n, y^n)}
$$

2.2 The encoder

We will use the *probabilistic method* to choose the encoder. For any message s, we will take $E(s)$ = $x_1x_2...x_n$, where all x_i are chosen independently following the law P_X . The global encoding scheme is E where all $E(s)$ are chosen independently following the previous distribution.

Our objective is to show that $\mathbb{E}_E[P_{\text{err}}] \rightarrow 0$, where $P_{\text{err}} = \frac{1}{2^{Rn}} \sum_{s \in \{0,1\}^{Rn}} P_{\text{err},s}$.

- 1. How can you prove Theorem [2.3](#page-0-0) if you have $\mathbb{E}_E[P_{\text{err}}] \rightarrow 0$?
- 2. Let us take now $\alpha(n, y^n) = K(n, \varepsilon) P_{Y^n}(y^n)$, where $K(n, \varepsilon)$ will be defined later, with:

$$
P_{Y^n}(y^n) = \sum_{x^n \in \mathcal{X}^n} P_{X^n Y^n}(x^n, y^n) = \sum_{x^n \in \mathcal{X}^n} P_{X^n}(x^n) W^n(y^n | x^n) .
$$

(a) With iid. variables X_iY_i following distribution P_{XY} , show that:

$$
\mathbb{E}_E[P^1_{\text{err},s}] = \mathbb{P}\left(\prod_{i=1}^n W(Y_i|X_i) < K(n,\varepsilon)\prod_{i=1}^n P_Y(Y_i)\right) \, .
$$

- (b) Define $i_{XY}(x, y) := \log \left(\frac{P_{XY}(x, y)}{P_{Y}(x)P_{Y}(y)} \right)$ $P_X(x)P_Y(y)$). What is the value of $\mathbb{E}[i_{XY}(X_i, Y_i)]$?
- (c) Show that:

$$
\mathbb{E}_E[P^1_{\text{err},s}] = \mathbb{P}\left(\sum_{i=1}^n i_{XY}(X_i,Y_i) < \log(K(n,\varepsilon))\right) \, .
$$

- (d) Using the weak law of large numbers^{[1](#page-1-0)}, give some sufficient conditions on $K(n, \varepsilon)$ to have $\mathbb{E}_E[P^1_{\text{err},s}] \rightarrow 0.$
- 3. Give an upper bound on $\mathbb{E}_E[P_{\text{err},s}^2]$ depending on $K(n,\varepsilon)$, and give some sufficient conditions on $K(n, \varepsilon)$ to have $\mathbb{E}_E[P^2_{\text{err},s}] \underset{n \to +\infty}{\to} 0$.
- 4. Conclude.

2.3 An application

1. Compute $C(W)$ for the bit flip channel W, ie. $W(b|b) = 1 - f$, $W(\overline{b}|b) = f$ for $b \in \{0, 1\}$ and $f \in [0, 1].$

¹If X_i are iid., then $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mathbb{E}[X_1]\right| < \varepsilon\right) \underset{n \to +\infty}{\to} 1$