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TUTORIAL 12

1 Homework 9

Show that for any ρ ∈ Cd×d, there exists quantum channels C : Cd×d → C and D : C→ Cd×d such that:

∆(D(C(ρ)), ρ) = 0 .

2 Shannon Channel Coding Theorem

The goal of this tutorial is to prove Shannon channel coding theorem. First, recall the definition of a code
and the capacity of a channel:

Definition 2.1. A (n,R, δ) code for the channel W = {W (y|x)}x∈X ,y∈Y is a pair E,D such that:

1. E : {0, 1}Rn → X n,

2. D : Yn → {0, 1}Rn,

3. With xn = x1 . . . xn, yn = y1 . . . yn and W n(yn|xn) := W (y1|x1)W (y2|x2) . . .W (yn|xn):

1

2Rn

∑
s∈{0,1}Rn

∑
yn∈Yn:D(yn)=s

W n(yn|E(s)) ≥ 1− δ .

It describes the average over all messages s of the probability of successfully decoding s, using n
independent copies of the channel W .

Definition 2.2. For a given channel W = {W (y|x)}x∈X ,y∈Y , define the capacity of W by:

C(W ) = max
PX

I(X : Y ) ,

where the joint distribution over X, Y is defined by PXY (x, y) = PX(x)W (y|x).

Theorem 2.3 (Shannon Channel Coding Theorem). For R < C(W ), there exists a sequence of (n,R, δn)
codes for W with δn →

n→+∞
0.

2.1 The decoder

We will assume that R < C(W ) is fixed. Let PX achieving the maximum in the definition of C(W ), and
define PXY (x, y) = PX(x)W (y|x). We will first assume that the encoder E is given:

1. What is the best choice for D?
However, this expression is hard to analyse. We will rather use the following decoder:

D(yn) =

{
s if there is a unique s such that W n(yn|E(s)) ≥ α(n, yn) ,

s0 otherwise.

where α(n, yn) will be defined later.



2. Give an expression for Perr,s, the probability of error for message s.

3. Prove that Perr,s ≤ P 1
err,s + P 2

err,s, with:

P 1
err,s :=

∑
yn∈Yn

W n(yn|E(s))1Wn(yn|E(s))<α(n,yn)

P 2
err,s :=

∑
yn∈Yn

W n(yn|E(s))
∑
s′ 6=s

1Wn(yn|E(s′))≥α(n,yn)

2.2 The encoder

We will use the probabilistic method to choose the encoder. For any message s, we will take E(s) =
x1x2 . . . xn, where all xi are chosen independently following the law PX . The global encoding scheme is
E where all E(s) are chosen independently following the previous distribution.

Our objective is to show that EE[Perr] →
n→+∞

0, where Perr = 1
2Rn

∑
s∈{0,1}Rn Perr,s.

1. How can you prove Theorem 2.3 if you have EE[Perr] →
n→+∞

0?

2. Let us take now α(n, yn) = K(n, ε)PY n(yn), where K(n, ε) will be defined later, with:

PY n(yn) =
∑
xn∈Xn

PXnY n(xn, yn) =
∑
xn∈Xn

PXn(xn)W n(yn|xn) .

(a) With iid. variables XiYi following distribution PXY , show that:

EE[P 1
err,s] = P

(
n∏
i=1

W (Yi|Xi) < K(n, ε)
n∏
i=1

PY (Yi)

)
.

(b) Define iXY (x, y) := log
(

PXY (x,y)
PX(x)PY (y)

)
. What is the value of E[iXY (Xi, Yi)] ?

(c) Show that:

EE[P 1
err,s] = P

(
n∑
i=1

iXY (Xi, Yi) < log(K(n, ε))

)
.

(d) Using the weak law of large numbers1, give some sufficient conditions on K(n, ε) to have
EE[P 1

err,s] →
n→+∞

0.

3. Give an upper bound on EE[P 2
err,s] depending on K(n, ε), and give some sufficient conditions on

K(n, ε) to have EE[P 2
err,s] →

n→+∞
0.

4. Conclude.

2.3 An application

1. Compute C(W ) for the bit flip channel W , ie. W (b|b) = 1 − f,W (b|b) = f for b ∈ {0, 1} and
f ∈ [0, 1].

1If Xi are iid., then P
(∣∣ 1

n

∑n
i=1 Xi − E[X1]

∣∣ < ε
)
→

n→+∞
1
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