TUTORIAL 11

1 Homework 8

- 1. Let P, Q be two probability distributions over a set R. An element r is sampled from P with probability $1/2$ and from Q with probability $1/2$.
	- (a) Proprose an algorithm which, on input r, distinguish between the case $r \leftarrow P$ and $r \leftarrow Q$ with probability $1/2 + 1/2 \cdot \Delta(P,Q)$.
	- (b) Show that this success probability is optimal.
- 2. Compute $H(\rho)$ for:
	- (a) $\rho = |+\rangle\langle +|$.
	- (b) $\rho = I/2$.

2 Trace distance through a quantum channel

We recall that the trace distance is defined as follows:

Definition 2.1. $\Delta(\rho, \rho') = 1/2 \cdot \text{Tr}(|\rho - \rho'|) = \min_{\pi} \text{Tr}(\pi(\rho - \rho'))$ where the minimum is taken among *the orthogonal projectors.*

- 1. Prove that $\Delta(\rho, \rho') = \Delta(U \rho U^{\dagger}, U \rho' U^{\dagger})$ for any ρ, ρ' density operator and U unitary.
- 2. Show that the trace distance follows the triangular inequality.
- 3. Let ρ , ρ' be two density operators. Let Φ a quantum channel. We are going to show that quantum channels can only make the trace distance decrease.
	- (a) Let M a positive hermitian operator and π an orthogonal projector. Show that Tr $(\pi M) \leq$ $\text{Tr}\ (M).$
	- (b) Let M a hermitian operator. Show that $M = A B$ with A, B positive hermitian. Show that in this case, $|M| = A + B$.
	- (c) Prove that $\Delta(\rho, \rho') \geq \Delta(\Phi(\rho), \Phi(\rho')).$

3 Information Theory Quantities

3.1 Conditional entropy

Definition 3.1. *The conditional entropy* $H(X|Y)$ *is defined by*

$$
H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y)H(X|Y=y) ,
$$

where $H(X|Y = y)$ *is the entropy of the conditional distribution* $P_{X|Y=y}$ *. Note that elements* $y \in Y$ *with* $P_Y(y) = 0$ *do not participate to the sum.*

- 1. What is the value of $H(X|X)$?
- 2. If X and Y are independent random variables, what is the value of $H(X|Y)$?
- 3. Prove that $0 \leq H(X|Y) \leq \log_2(|\mathcal{X}|)$.
- 4. Prove that $H(X|Y) = H(XY) H(Y)$, where $H(XY) := H((X,Y)) = -\sum_{x,y} P_{XY}(x,y) \log_2 P_{XY}(x,y)$.

3.2 Mutual Information

Definition 3.2. *The mutual information is defined by*

$$
I(X:Y) = H(X) - H(X|Y)
$$

= H(X) + H(Y) - H(XY).

Writing out the definitions, we get $I(X:Y) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{XY}(x, y) \log_2 \frac{P_{XY}(x, y)}{P_X(x)P_Y(y)}$ $\frac{P_{XY}(x,y)}{P_X(x)P_Y(y)}$.

- 1. What is the value of $I(X : X)$?
- 2. If X and Y are independent, what is the value of $I(X:Y)$?
- 3. For any pair of random variables, prove that $I(X:Y) \geq 0$. *Hint: Use Jensen's inequality on* $-I(X:Y)$ *.*

Figure 1: Relation between the entropic measures we have introduced