TUTORIAL 10

1 Homework 7

- 1. Compute the Kraus representation of the following circuit:
 - (a) Add an ancilla qubit $|0\rangle$.
 - (b) Apply the 2-qubit operator U.
 - (c) Take the partial trace over the first qubit.

2. Let
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$
. Let Φ be the phase flip channel with probability $p = \frac{1}{2}$. Compute $\Phi(M)$.

2 Partial Trace

- 1. We first consider the space of two qubits $\mathbb{C}^2_A \otimes \mathbb{C}^2_B$, A denoting the first qubit and B the second:
 - (a) Write the pure state $|\phi_1\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$ as a density matrix ρ^1 . Compute $\rho_A^1 = \text{Tr}_B(\rho^1)$.
 - (b) Write the mixture of state $|++\rangle$ with probability $\frac{1}{2}$ and $|--\rangle$ with probability $\frac{1}{2}$ as a density matrix ρ^2 . Compute $\rho_B^2 = \text{Tr}_A(\rho^1)$.

(c) Consider
$$\rho = \frac{1}{12} \begin{pmatrix} 5 & 1 & -1 & 3 \\ 1 & 1 & -1 & -1 \\ -1 & -1 & 1 & 1 \\ 3 & -1 & 1 & 5 \end{pmatrix}$$
. What properties would you need on ρ to prove that it is a density matrix? Compute $\rho_A = \text{Tr}_B(\rho)$.

- 2. From now on, we consider a density matrix ρ_{AB} on an unknown bipartite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$:
 - (a) Show that $\rho_A := \operatorname{Tr}_B(\rho_{AB})$ is a valid density matrix.
 - (b) Suppose ρ_{AB} is a pure state, ie. $\rho_{AB} = |\psi\rangle\langle\psi|_{AB}$ for $|\psi\rangle_{AB} = \sum_{j=1}^{d_A} \sum_{k=1}^{d_B} C_{j,k} |b_j\rangle_A \otimes |c_k\rangle_B$, with $\{|b_j\rangle_A\}_j$ and $\{|c_k\rangle_B\}_k$ orthonormal basis of \mathcal{H}_A and \mathcal{H}_B . Let C be the $d_A \times d_B$ matrix with entries $C_{j,k}$. Show that $a_A = CC^{\dagger}$ and $a_B = C^{\dagger}C$

Show that $\rho_A = CC^{\dagger}$ and $\rho_B = C^{\dagger}C$.

(c) Consider a classical probability distribution P_{XY} . Calculate the marginal distribution P_X for:

$$P_{XY}(x,y) = \begin{cases} \frac{1}{2} & \text{if } (x,y) = (0,0), \\ \frac{1}{2} & \text{if } (x,y) = (1,1), \\ 0 & \text{otherwise,} \end{cases}$$

with alphabets $\mathcal{X} = \mathcal{Y} = \{0, 1\}$. How can we represent P_{XY} in the form of a density matrix? Compute the partial trace of P_{XY} in its quantum representation.

3 Bloch Ball and Sphere

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{C}^{2 \times 2}$ be a matrix. We recall the following facts:

- If $A = A^{\dagger}$ then A is diagonalizable in an orthonormal basis and its eigenvalues are real.
- If A is diagonalizable and λ_{-}, λ_{+} are its eigenvalues, then Tr $(A) = \lambda_{-} + \lambda_{+}, \det(A) = \lambda_{-}\lambda_{+}$.

We recall that the **Pauli matrices** $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. The **Bloch Ball** to be the set of operator of the form

$$\rho(\mathbf{r}) = \frac{1}{2} \left(I + r_X \cdot \sigma_X + r_Y \cdot \sigma_Y + r_Z \cdot \sigma_Z \right) = \frac{1}{2} \left(I + \mathbf{r} \cdot \sigma \right).$$

for $\|\mathbf{r}\| \leq 1$. The **Bloch Sphere** is the set of $\rho(\mathbf{r})$ for $\|\mathbf{r}\| = 1$.

- 1. Diagonalize the states represented by the Bloch vectors (1/2, 0, 0) and $(1/\sqrt{2}, 0, 1/\sqrt{2})$.
- 2. Show that any operator in the Bloch Ball is a density operator.
- 3. Show the converse: that any density operator is in the Bloch Ball.
- 4. Show that the Bloch Sphere is exactly the set of pure states.

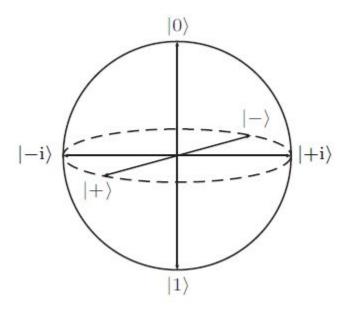


Figure 1: The Bloch Sphere