HW 1: Symmetric Cryptography – Due date: February 28, 2023 before tutorial

Exercise 1.

PRF implies PRG Let $F : \{0,1\}^s \times \{0,1\}^n \to \{0,1\}^m$ be a secure Pseudo-Random Function (PRF). We define the following PRGs G_d : $\{0,1\}^s \rightarrow \{0,1\}^{md}$, for $d \leq \text{poly}(m)$ such that:

$$\forall k \in \{0,1\}^s, G_d(k) = F(k,\bar{0}) ||F(k,\bar{1})|| \dots ||F(k,\overline{d-1}),$$

where || denotes the concatenation operator and \tilde{i} denotes the binary decomposition of *i*, written over *m* bits.

1. Prove that G_d is a secure PRG.

Exercise 2.

PRG implies PRF

Let $G: \{0,1\}^s \to \{0,1\}^{2s}$ be a secure length-doubling PRG. We have aldready how to get such a PRG from any PRG in the previous tutorials. The Goldreich-Goldwasser-Micali construction shows how to build a secure Pseudo-Random Function for any input size from G.

1. Let us denote $G(k) =: G_0(k) ||G_1(k)$ for any $k \in \{0,1\}^s$ where $G_0, G_1 : \{0,1\}^s \to \{0,1\}^s$. Define $F_0: \{0,1\}^s \times \{0,1\} \to \{0,1\}^s$ such that:

$$\forall k \in \{0,1\}^s, \forall b \in \{0,1\}, F_0(k,b) := G_b(k).$$

Prove that F_0 is a secure PRF.

We now expand our construction to arbitrary input size *n*. Define the iterated PRF F_n : $\{0,1\}^s \times$ $\{0,1\}^n \rightarrow \{0,1\}^s$ that does the following: on inputs k and $x = x_0 x_1 \dots x_{n-1}$, define $k_0 := k$ and compute recursively $k_i := G_{x_{i-1}}(k_{i-1})$ for i = 1 to n. Finally output k_n . Remark: This can be seen as going down a binary tree.

2. Before proving the security of F_n , we prove that the distribution $(G(k_1), G(k_2), \ldots, G(k_O))$, where $k_i \leftarrow i$ $U(\{0,1\}^s)$ is indistinguishable from $U(\{0,1\}^{2Qs})$ for any Q = poly(s), under the security of *G*. We use the hybrid argument by defining the following hybrid distributions:

$$\forall i \in [0, Q], D_i := (G(k_1), \dots, G(k_i), U(\{0, 1\}^{2s(Q-i)}) \text{ where } k_i \leftrightarrow U(\{0, 1\}^s) \forall j \leq i$$

Notice that D_0 and D_0 correspond to the distributions defined previously.

Prove that D_0 and D_Q are indistinguishable under the security of G. Estimate the security loss. We move on to the proof that F_n is secure.

3. To do so, we use the hybrid argument by introducing the following hybrid experiments. Let us first define (\mathbf{D})

$$F_{n,i}^{(K_i)}:(x_0,\ldots,x_{n-1})\mapsto G_{x_{n-1}}(\ldots(G_{x_i}(R_i(x_0,\ldots,x_{i-1})))),$$

where $R_i : \{0, 1\}^i \to \{0, 1\}^s$ is a map.

- (a) Prove that $F_{n,0}^{(U(\{\varepsilon\}\to\{0,1\}^s))}(\cdot)$ is actually the distribution $F_n(U(\{0,1\}^s),\cdot)$.
- (b) Prove that $F_{n,n}^{(U(\{0,1\}^n \to \{0,1\}^s))}$ is actually the distribution $U(\{0,1\}^n \to \{0,1\}^s)$.
- (c) We define the hybrid experiment Exp_i for $i \in [1, n]$ as: the challenger flips a coin b and samples R uniformly over $\{0,1\}^{i-b} \rightarrow \{0,1\}^n$. The adversary is then given access to an oracle, which on query $x \in \{0,1\}^n$ answers with $F_{n,i-b}^{(R)}(x)$. Eventually, the adversary outputs a guess b' and wins if and only if b = b'.

Prove that the PRF F_n is secure under the security of the PRG G and estimate the advantage loss.

Exercise 3.

Encrypting with a PRF

Let *F* be a PRF function from $\{0,1\}^s \times \{0,1\}^n \to \{0,1\}^m$, we define the following encryption scheme: To encrypt a message $M \in \{0,1\}^m$ with a key $k \in \{0,1\}^s$, choose *r* uniformly in $\{0,1\}^n$ and return $c = (r || F(k,r) \oplus M)$.

Show that this scheme is secure. More precisely, show if that there exists a PPT adversary A against the encryption scheme, then there exists a PPT adversary B against the PRF function F such that:

$$\operatorname{Adv}_{\mathcal{A}}^{CPA}(Enc) \leq 2\operatorname{Adv}_{\mathcal{B}}^{PRF}(F) + Q^2/2^n$$
,

where Q is the number of encryptions queried by A.

Exercise 4. *IND-CCA secure symmetric encryption* Consider the following construction of symmetric encryption, where $\Pi = (\text{Gen}, \text{Mac}, \text{Verify})$ is a MAC.

Gen(1^{λ}): Choose a random key $K_1 \leftarrow \text{Gen}'(1^{\lambda})$ for an IND-CPA secure symmetric encryption scheme (Gen', Enc', Dec'). Choose a random key $K_0 \leftarrow \Pi$.Gen(1^{λ}) for the MAC Π . The secret key is $K = (K_0, K_1)$.

Enc(K, M): To encrypt M, do the following.

- 1. Compute $c = Enc'(K_1, M)$.
- 2. Compute $t = \Pi$.Mac(K_0, c).

Return
$$C = (t, c)$$
.

Dec(*K*, *C*): Return \perp if \prod .Verify(*K*₀, *c*, *t*) = 0. Otherwise, return $M = \text{Dec}'(K_1, c)$.

- **1.** Assume that the MAC is weakly unforgeable. Assume however that there exists an algorithm \mathcal{F} , which on input a valid message for the MAC and a tag (M, t), outputs a forgery (M, t') such that $t \neq t'$. In particular, the MAC is not strongly unforgeable. Show that the scheme is not IND-CCA secure.
- 2. We assume that: (i) (Gen', Enc', Dec') is IND-CPA-secure; (ii) Π is strongly unforgeable under chosen-message attacks. We will prove in this question the IND-CCA security of the new encryption scheme under these assumptions. Let A be an adversary against the IND-CCA security of the scheme.
 - (a) Define the event Valid as the event where A makes a valid (i.e. accepted by the MAC) decryption query for (*c*, *t*) where the ciphertext *c* was not encrypted by the encryption oracle nor is (*c*, *t*) the challenge ciphertext. Prove that if Pr(Valid) is non-negligible then there exists an adversary with non-negligible advantage against the strong unforgeability of the MAC. The intuition is that since this event has negligible probability, the decryption oracle is useless to an attacker A.
 - (b) Prove that if $|\Pr(A \text{ wins } \land \overline{\text{Valid}}) 1/2|$ is non-negligible, then there exists an efficient adversary against the IND-CPA security of the encryption scheme (Gen, Enc', Dec').
 - (c) Conclude.