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TD Bonus

Exercise 1. CTR Security
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF. To encrypt a message M ∈ {0, 1}d·n, CTR proceeds as
follows:

• Write M = M0∥M1∥ . . . ∥Md−1 with each Mi ∈ {0, 1}n.

• Sample IV uniformly in {0, 1}n.

• Return IV∥C0∥C1∥ . . . ∥Cd−1 with Ci = Mi ⊕ F(k, IV + i mod 2n) for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

2. Assume an attacker makes Q encryption queries. Let IV1, . . . , IVQ be the corresponding IV’s.
Let Twice denote the event “there exist i, j ≤ Q and ki, k j < d such that IVi + ki = IVj + k j mod 2n

and i ̸= j.” Show that the probability of Twice is bounded from above by Q2d/2n−1.

3. Assume the PRF F is replaced by a uniformly chosen function f : {0, 1}n → {0, 1}n. Give an
upper bound on the distinguishing advantage of an adversary A against this idealized version of
CTR, as a function of d, n and the number of encryption queries Q.

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.

Exercise 2. weak PRF
In the PRF security game, the adversary may adaptively make function evaluation queries: for i =
1, 2, . . ., it sends xi of its choice, and gets Fk(xi) (resp. f (xi)) from the challenger, where Fk is the PRF
(resp. f is the uniformly chosen function). A weak-PRF consists of the same algorithms as a PRF, but
the queries are modified as follows: the adversary does not get to see Fk(xi) (resp. f (xi)) for an input
xi of its choice, but instead every time the adversary requests a new pair, the challenger samples a
fresh uniform xi and sends (xi, Fk(xi)) (resp. (xi, f (xi))) to the adversary.

1. Give a formal definition of a weak-PRF, based on a security game.

2. Show that a PRF is a weak-PRF, by providing a security reduction.

3. Assuming that a weak-PRF exists, build a weak-PRF that is not a PRF.

4. What is the difference between a PRG and a weak-PRF?

Let G = (g) be a cyclic group of known prime order p. We recall that the DDH hardness assumption
states that the distributions (ga, gb, gab) and (ga, gb, gc) are computationally indistinguishable when a, b
and c are independently and uniformly distributed in Z/pZ. Let k ∈ Z/pZ a uniformly chosen key.
We consider the function Fk : h ∈ G 7→ hk ∈ G.

5. Let Q ≥ 1. Consider the (randomized) map ϕ that takes (g1, g2, g3) ∈ G3 as input, samples
(xi, yi) ∈ (Z/pZ)2 uniformly and independently for i ≤ Q and returns (gxi

1 gyi , gxi
3 gyi

2 )i≤Q.
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• Show that if (g1, g2, g3) = (ga, gb, gab), then the output is distributed as (gri , gbri )i≤Q for ri’s
in Z/pZ uniform and independent.

• Show that if (g1, g2, g3) = (ga, gb, gc) for c ̸= ab, then the output is distributed as (gri , gsi )i≤Q
for (ri, si)’s in (Z/pZ)2 uniform and independent.

6. Show that Fk is a weak-PRF under the DDH hardness assumption.
Hint: set “k = b” and use the previous question to build the weak PRF challenger.

7. Is Fk a secure PRF? Justify your answer.

Exercise 3. CBC-MAC
Let F : {0, 1}k × {0, 1}n → {0, 1}n be a PRF, d > 0 and L = nd. Prove that the following modifications
of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define ti := F(K, ti−1⊕mi)
for i ∈ [1, d] and t0 := IV = 0.

1. Modify CBC-MAC so that a random IV ←↩ U({0, 1}n) (rather than IV = 0) is used each time a
tag is computed, and the output is (IV, td) instead of td alone.
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Figure 1: CBC-MAC

2. Modify CBC-MAC so that all the outputs of F are output, rather than just the last one.
We now consider the following ECBC-MAC scheme: let F : K × X → X be a PRF, we define FECBC :
K2 × X≤L → X as in Figure 2, where K1 and K2 are two independent keys.
If the message length is not a multiple of the block length n, we add a pad to the last block: m =
m1| . . . |md−1|(md∥pad(m)).

3. Show that there exists a padding for which this scheme is not secure.
For the security of the scheme, the padding must be invertible, and in particular for any message
m0 ̸= m1 we need to have m0||pad(m0) ̸= m1||pad(m1). In practice, the ISO norm is to pad with
10 · · · 0, and if the message length is a multiple of the block length, to add a new “dummy” block
10 · · · 0 of length n.

4. Prove that this scheme is not secure if the padding does not add a new “dummy” block if the
message length is a multiple of the block length.

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k1, k2). If
the message length is not a multiple of the block length, then we append the ISO padding to it and
then we also XOR this last block with the key k1. If the message length is a multiple of the block
length, then we XOR this last block with the key k2. After that, we perform a last encryption with
F(k, .) to obtain the tag.

Exercise 4. Merkle-Damgård transform
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Figure 2: ECBC-MAC

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a
last block the binary representation of the length of this message. Suppose that we do not add
this block: does this transform still lead to a collision-resistant hash function?

2. Before HMAC was invented, it was quite common to define a MAC by Mack(m) = Hs(k ∥ m)
where H is a collision-resistant hash function. Show that this is not a secure MAC when H is
constructed via the Merkle-Damgård transform.
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