
M1 – Cryptography and Security (2022/2023) A. Passelègue and J. Felderhoff

TD Bonus (corrected version)

Exercise 1. CTR Security
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF. To encrypt a message M ∈ {0, 1}d·n, CTR proceeds as
follows:

• Write M = M0∥M1∥ . . . ∥Md−1 with each Mi ∈ {0, 1}n.

• Sample IV uniformly in {0, 1}n.

• Return IV∥C0∥C1∥ . . . ∥Cd−1 with Ci = Mi ⊕ F(k, IV + i mod 2n) for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext
attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
☞ Let (KeyGen,Enc,Dec) be an encryption scheme. We consider the following experiments Expb for b ∈ {0, 1}:

• Challenger samples k← KeyGen,

• Adversary makes q encryption queries on messages (Mi,0, Mi,1),

• Challenger sends back Enc(k, Mi,b) for each i,

• Adversary returns b′ ∈ {0, 1}.

We define the advantage of the adversary A against the encryption scheme as

AdvCPA(A) =
∣∣Pr(A

Exp1−−→ 1)− Pr(A
Exp0−−→ 1)

∣∣.
Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a
non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly

at random, and the advantage is defined as AdvCPA(A) = |Pr(A → 1 | b = 0)− Pr(A → 1 | b = 1)|.

2. Assume an attacker makes Q encryption queries. Let IV1, . . . , IVQ be the corresponding IV’s.
Let Twice denote the event “there exist i, j ≤ Q and ki, k j < d such that IVi + ki = IVj + k j mod 2n

and i ̸= j.” Show that the probability of Twice is bounded from above by Q2d/2n−1.
☞ Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is
not interesting for our purpose.

For i, j ≤ Q, let Twicei,j be the event “∃ki , k j < d : IVi + ki = IVj + k j (mod 2n)”, which is equivalent to “∃k, |k| < d and IVi − IVj = k
(mod 2n). As the IVs are chosen uniformly and independently, IVi − IVj is uniform modulo 2n and Pr(Twicei,j) ≤ 2−n(2d− 1). (The
inequality is strict when 2d− 1 > 2n, in which case Pr(Twicei,j) = 1.) Then,

Pr(Twice) ≤ ∑
1≤i ̸=j≤Q

Pr(Twicei,j) = Q(Q− 1)2−n(2d− 1) ≤ 21−nQ2d.

3. Assume the PRF F is replaced by a uniformly chosen function f : {0, 1}n → {0, 1}n. Give an
upper bound on the distinguishing advantage of an adversary A against this idealized version of
CTR, as a function of d, n and the number of encryption queries Q.
☞ We write Mi,β = Mi,β

0 ∥ . . . ∥Mi,β
d−1 with 1 ≤ i ≤ Q and β ∈ {0, 1} the encryption queries of the adversary A and Ci = IVi∥Ci

0∥ . . . ∥Ci
d−1

with 1 ≤ i ≤ Q the replies. Given the value of b ∈ {0, 1} chosen by the challenger, we know that Ci
j = Mi,b

j ⊕ f (IVi + j (mod 2n)) for
all 1 ≤ i ≤ Q and 0 ≤ j < d.

If Twice does not occur, then all the IVi + j (mod 2n) for 1 ≤ i ≤ Q and 0 ≤ j < d are pairwise distinct. Then the values of f at these
points are independent and uniformly distributed, since f : {0, 1}n → {0, 1}n is chosen uniformly at random. Therefore, all the Ci

j are also
independent and uniformly distributed regardless of the value of b, so that Pr(¬Twice∧A → 1 | b = 0) = Pr(¬Twice∧A → 1 | b = 1).
It follows that

AdvCPAU (A) = |Pr(Twice∧A → 1 | b = 0)− Pr(Twice∧A → 1 | b = 1)|
= |Pr(A → 1 | b = 0, Twice)− Pr(A → 1 | b = 1, Twice)|Pr(Twice)

≤ Pr(Twice) ≤ 21−nQ2d.

1

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.
☞ Assume that A is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack.
We build an adversary B against the underlying PRF F as follows:

1. Choose b ∈ {0, 1} uniformly at random.

2. For each encryption query (M0, M1) from A, encrypt Mb using the given scheme, that is,

(a) Choose IV ∈ {0, 1}n uniformly at random.
(b) For j = 0 to d− 1, send a query for IV + j and with the reply f j compute Cj = Mb

j ⊕ f j.

(c) Send IV∥C0∥ . . . ∥Cd−1 back to A.

3. When A finally outputs a bit b′ ∈ {0, 1}, output 1 if b′ = b and 0 otherwise.

The advantage of B against the PRF F is

AdvPRFF (B) = |Pr(B → 1 | PRF)− Pr(B → 1 | Unif)|

where PRF is the experiment in which replies to B are computed by calling F and Unif is the one in which replies to B are computed
from a uniformly chosen random function f .

Considering the two terms separately gives

Pr(B → 1 | E) =
1
2
(Pr(b′ = 0 | E, b = 0) + Pr(b′ = 1 | E, b = 1))

=
1
2
(1 + Pr(A → 1 | E, b = 1)− Pr(A → 0 | E, b = 0))

where E is either PRF or Unif. Therefore

AdvPRFF (B) ≥ 1
2
(
AdvCPA(A)−AdvCPAU (A)

)
≥ 1

2
AdvCPA(A)− 21−nQ2d

using the previous question. Thus, if AdvCPA(A) is non-negligible then so is AdvPRFF (B), which is then about a half of AdvCPA(A).

Exercise 2. weak PRF
In the PRF security game, the adversary may adaptively make function evaluation queries: for i =
1, 2, . . ., it sends xi of its choice, and gets Fk(xi) (resp. f (xi)) from the challenger, where Fk is the PRF
(resp. f is the uniformly chosen function). A weak-PRF consists of the same algorithms as a PRF, but
the queries are modified as follows: the adversary does not get to see Fk(xi) (resp. f (xi)) for an input
xi of its choice, but instead every time the adversary requests a new pair, the challenger samples a
fresh uniform xi and sends (xi, Fk(xi)) (resp. (xi, f (xi))) to the adversary.

1. Give a formal definition of a weak-PRF, based on a security game.
☞ A function F : {0, 1}n ×{0, 1}m → {0, 1}d is a weak-PRF if for every efficient (e.g., ppt) adversary A, we have that Adv(A)wPRF :=
|Pr[A → 1 in ExpReal]− Pr[A → 1 in ExpUni f]| is negligible. ExpReal is when C samples k uniformly in {0, 1}n and sets f = Fk in the
experiment below. ExpReal is when C samples f : {0, 1}m → {0, 1}d uniformly.

Challenger C Algorithm A
Samples f

←− ping (as many times as desired)
Samples x ← U({0, 1}m)

(x, f (x)) −→
Output a bit b.

2. Show that a PRF is a weak-PRF, by providing a security reduction.
☞ Here is the reduction:

PRF challenger C Algorithm B wPRF Attacker A
Chooses f , either

uniform or Fk
←− ping (as many times as desired)

Samples x ← U({0, 1}m)
←− x

(x, f (x)) −→
−→

←− b
Output b

2

When C uses Fk, the view of A is as in experiment ExpUni f above. When C uses f , the view of A is as in experiment ExpwPRF above.
Hence Adv(B)PRF = Adv(A)wPRF.

3. Assuming that a weak-PRF exists, build a weak-PRF that is not a PRF.
☞ Let F be a secure weak-PRF. For all key k, we define F′k as Fk, except that F′k(0

m) = 0d.

We have that F′ is not a PRF, an adversary can query 0m and output b = 1 if and only if the reply is 0d. In the Real experiment,
this adversary outputs b = 1 with probability 1. In the Unif experiment, it outputs b = 1 with probability 1/2d. The advantage is
non-negligible.

Let us now argue that F′ is still a weak PRF. The probability that during the experiment the challenger samples 0m to answer one of
the attacker’s queries is ≤ Q · 2−m, where Q is the number of queries made by the adversary. Let us call this event Bad. Assume we
have an attacker A for F. We build an attacker B for F′ as follows:

wPRF challenger C for F Algorithm B wPRF Attacker A for F′
Chooses f , either

uniform or Fk
←− ping (as many times as desired)

←− ping
Sample x ← U({0, 1}m)

(x, f (x)) −→
−→

←− b
Output b

We have:

Adv(B for F) =
∣∣∣Pr[B → 1 in ExpUni f |Bad]Pr[Bad] + Pr[B → 1 in ExpUni f |Bad]Pr[Bad]

−Pr[B → 1 in ExpReal |Bad]Pr[Bad] + Pr[B → 1 in ExpReal |Bad]Pr[Bad]
∣∣∣

≤ Pr[Bad] + Pr[Bad]
∣∣∣Pr[B → 1 in ExpUni f |Bad]− Pr[B → 1 in ExpReal |Bad]

∣∣∣
= Pr[Bad] + Pr[Bad]

∣∣∣Pr[A → 1 in ExpUni f |Bad]− Pr[A → 1 in ExpReal |Bad]
∣∣∣ .

Note that the last term is ≤ Adv(A for F′). Hence:

Adv(B for F) ≤ Q · 2−m +Adv(A for F′).

4. What is the difference between a PRG and a weak-PRF?
☞ In a PRG experiment for a univariate function G, the challenger uniformly samples a (secret) seed s and sends G(s) to the
adversary. In a weak-PRF experiment for a bivariate function F, the challenger uniformly samples a (secret) key k, then for the Q
queries of the attacker, is samples uniform xi’s and sends back to the attacker the xi’s together with either F(k, xi). Note that if Q = 1,
then the games are similar, and x1 can even be considered as part of the description of G (formally, we can set G(·) = F(·, x1)). So
the main difference between a PRG and a weak-PRF is that in a weak-PRF the adversary can query as many inputs as it wants. This
is different from the PRG case where the description of G is fixed and the size of the output if fixed (the adversary cannot ask for
more).

Alternatively, one may compare G(·) and F(k, ·): in the first case the seed s stays secret, in the second case the input xi is provided

to the adversary.

Let G = (g) be a cyclic group of known prime order p. We recall that the DDH hardness assumption
states that the distributions (ga, gb, gab) and (ga, gb, gc) are computationally indistinguishable when a, b
and c are independently and uniformly distributed in Z/pZ. Let k ∈ Z/pZ a uniformly chosen key.
We consider the function Fk : h ∈ G 7→ hk ∈ G.

5. Let Q ≥ 1. Consider the (randomized) map ϕ that takes (g1, g2, g3) ∈ G3 as input, samples
(xi, yi) ∈ (Z/pZ)2 uniformly and independently for i ≤ Q and returns (gxi

1 gyi , gxi
3 gyi

2)i≤Q.

• Show that if (g1, g2, g3) = (ga, gb, gab), then the output is distributed as (gri , gbri)i≤Q for ri’s
in Z/pZ uniform and independent.

• Show that if (g1, g2, g3) = (ga, gb, gc) for c ̸= ab, then the output is distributed as (gri , gsi)i≤Q
for (ri, si)’s in (Z/pZ)2 uniform and independent.

3

☞ In the case where c = ab, we have (
gxi

1 gyi , gxi
3 gyi

2

)
=

(
gaxi+yi , gabxi+byi

)
.

So, by letting ri = axi + yi, this is (gri , gbri). Moreover, as the yi’s are uniform in Zp and independent of the xi’s and a, the ri’s are
also uniform. Finally, as the yi’s are all independent, then so are the ri’s.

In the case where c ̸= ab, we have (gxi
1 gyi , gxi

3 gyi
2) = (gri , gsi), where(

ri
si

)
=

(
a 1
c b

)
·
(

xi
yi

)
.

As c ̸= ab (and p is prime), the matrix is invertible. Hence, it induces a bijection over Z2
p. As the (xi , yi)’s are uniform and independent,

we conclude that so are the (ri , si)’s.

6. Show that Fk is a weak-PRF under the DDH hardness assumption.
Hint: set “k = b” and use the previous question to build the weak PRF challenger.
☞ Let A be a weak-PRF attacker against F. Let us build an algorithm B against the DDH assumption.

DDH challenger C Algorithm B wPRF Attacker A
Sample a bit β, and a, b, c← U(Zp)

If β = 0, then set c = ab
(ga , gb , gc) −→

←− ping (as many times as desired)
xi , yi ← U(Zp)

hi = (ga)xi · gyi , ti = (gc)xi · (gb)yi

store the values (hi , ti) and if some hi shows up again,
then replace ti by the one that was obtained before.

(hi , ti) −→
←− β′

Output β′

Let us analyze the above game. If c = ab, then for each query, algorithm A receives hi = gri and ti = gbri where b← U(Zp) stays the
same throughout the experiment. Moreover, as the ri’s are uniform in Zp and independent, the hi’s are uniform and independent in G.
So A’s view is exactly the same as if it were given oracle access to F as in the weak-PRF game.

Now, if c ̸= ab, adversary A receives (hi , ti) = (gri , gsi), where the (ri , si)’s are uniform and independent. So the (hi , ti)’s are also
uniform and independent in G2. Moreover the answers of B are consistent, meaning that each hi always comes with the same ti (that’s
why algorithm B is keeping a table!). Then the adversary’s view is the same as if it were oracle access to a uniform map f .

To conclude, it holds that

Adv(B) = |Pr(β′ = 1|β = 1)− Pr(β′ = 1|β = 0)|
= |Pr(β′ = 1|c = ab)− Pr(β′ = 1|c← U(Zp))|
= |Pr(β′ = 1|c = ab)− Pr(β′ = 1|c ̸= ab)Pr(c ̸= ab|c← U(Zp))− Pr(β′ = 1|c = ab)Pr(c = ab|c← U(Zp))|

=
p− 1

p
· |Pr(β′ = 1|c = ab)− Pr(β′ = 1|c← U(Zp \ {ab}))|

=
p− 1

p
·Adv(A).

Here, the last equality comes from the above discussion. Then if the DDH assumption holds, the advantage of A is negligible, and F

is a secure weak-PRF.

7. Is Fk a secure PRF? Justify your answer.

☞ No. Consider the following adversary A. It queries g and g2 and gets two values x and x2. It returns 1 if and only if x2 = x2 and 0

otherwise. In the PRF game, algorithm A always outputs 1. In the case of the uniform game, it is wrong if and only if F(g2) = F(g)2,

which happens with probability 1/p. Its advantage is then p−1
p , which is non-negligible.

Exercise 3. CBC-MAC
Let F : {0, 1}k × {0, 1}n → {0, 1}n be a PRF, d > 0 and L = nd. Prove that the following modifications
of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define ti := F(K, ti−1⊕mi)
for i ∈ [1, d] and t0 := IV = 0.

1. Modify CBC-MAC so that a random IV ←↩ U({0, 1}n) (rather than IV = 0) is used each time a
tag is computed, and the output is (IV, td) instead of td alone.

☞ If an adversary asks for a tag (t0, td) of any (m1, . . . , md), then it can output (t0 ⊕ x, td), (m1 ⊕ x, . . . , md) as a forgery, as it is a

valid pair of a tag and a message. Such an adversary wins everytime and has non-negligible advantage in the unforgeability game.

4

md

K F

result

· · ·

m2

K F

IV = 0

m1

K F

Figure 1: CBC-MAC

md

K1

K2

F

F

result

· · ·

m2

K1 F

IV = 0

m1

K1 F

Figure 2: ECBC-MAC

2. Modify CBC-MAC so that all the outputs of F are output, rather than just the last one.
☞

If an adversary aks for a tag (t1, t2, . . . , td) of any message (0, m2, . . . , md), then it can output (t2, t3, . . . , td , t1), (m2 ⊕ t1, m3, . . . , md , td)

as a forgery as it is a valid pair (tag, message). Such an adversary wins everytime. Indeed, F(K, m2 ⊕ t1 ⊕ 0) = t2 by definition

and F(K, td ⊕ td) = t1 since m1 = 0.

We now consider the following ECBC-MAC scheme: let F : K × X → X be a PRF, we define FECBC :
K2 × X≤L → X as in Figure 2, where K1 and K2 are two independent keys.
If the message length is not a multiple of the block length n, we add a pad to the last block: m =
m1| . . . |md−1|(md∥pad(m)).

3. Show that there exists a padding for which this scheme is not secure.
☞
We could for instance pad with as many 0s as necessary.

Let m of length < n. Then, m||pad(m) = m||0||pad(m||0). As such we build an adverary for the unforgeability game that:

• asks for a tag for m of length < n.
• Gets a tag t.
• Returns the forgery (m||0, t).

This adversary always wins and as such breaks the unforgeability of the scheme.

For the security of the scheme, the padding must be invertible, and in particular for any message
m0 ̸= m1 we need to have m0||pad(m0) ̸= m1||pad(m1). In practice, the ISO norm is to pad with
10 · · · 0, and if the message length is a multiple of the block length, to add a new “dummy” block
10 · · · 0 of length n.

5

4. Prove that this scheme is not secure if the padding does not add a new “dummy” block if the
message length is a multiple of the block length.

☞ Let m = m1 ∥ 100 of the length of a block, then m = m1 ∥ pad(m1), so any valid tag for m is a valid tag for m1.

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k1, k2). If
the message length is not a multiple of the block length, then we append the ISO padding to it and
then we also XOR this last block with the key k1. If the message length is a multiple of the block
length, then we XOR this last block with the key k2. After that, we perform a last encryption with
F(k, .) to obtain the tag.

Exercise 4. Merkle-Damgård transform

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a
last block the binary representation of the length of this message. Suppose that we do not add
this block: does this transform still lead to a collision-resistant hash function?

☞ No. Take for instance x of length Bℓ(n)− 1 for some B ≥ 2, and y = x∥0. In the transform, we start by padding x with one zero

so that its length is a multiple of ℓ(n): we obtain y. In the rest of the process, the only thing that differs between x and y is that their

“length blocks” are not the same; without this length block, x and y form a collision.

2. Before HMAC was invented, it was quite common to define a MAC by Mack(m) = Hs(k ∥ m)
where H is a collision-resistant hash function. Show that this is not a secure MAC when H is
constructed via the Merkle-Damgård transform.
☞ The goal is to construct (m, t) with Verifyk(m, t) = 1, having oracle access to Mack but without querying Mack(m) itself.

With Merkle-Damgård, the function Hs divides the message k ∥ m in p blocks x1, . . . , xp of size ℓ (padding the last block xp with a
Padding Block PB so that xp ∥ PB has size ℓ) and then adding a new block xp+1 of length ℓ depending on the bit length of k ∥ m.
Then the Merkle-Damgård construction uses a (fixed-length) collision-resistant hash function h to compute its output as follows:

Hs(k ∥ m) = hs(xp+1, hs(xp ∥ PB, hs(xp−1, hs(. . . , hs(x1, IV))))).

Given Hs(k ∥ m), anyone can compute Hs(k ∥ m ∥ PB ∥ xp+1 ∥ ω) for any ω; for instance, if ω is of size ℓ, using hs(x′p+2, hs(ω, Hs(k ∥ m)))

where x′p+2 only depends on the length of k ∥ m ∥ PB ∥ xp+1 ∥ ω and can be publicly computed.

6

	1. CTR Security
	2. weak PRF
	3. CBC-MAC
	4. Merkle-Damgård transform

