CTR Security

TD Bonus (corrected version)

Exercise 1.

Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0, 1\}^n$.
- Return $IV ||C_0||C_1|| \dots ||C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all *i*.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

- 1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
 - \mathbb{R}^{3} Let (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp_{b} for $b \in \{0, 1\}$:
 - Challenger samples $k \leftarrow \text{KeyGen}$,
 - Adversary makes q encryption queries on messages $(M_{i,0}, M_{i,1})$,
 - Challenger sends back $Enc(k, M_{i,b})$ for each i,
 - Adversary returns $b' \in \{0,1\}$.

We define the advantage of the adversary ${\mathcal A}$ against the encryption scheme as

$$\operatorname{\mathsf{Adv}}^{\operatorname{\mathsf{CPA}}}(\mathcal{A}) = \big| \operatorname{Pr}(\mathcal{A} \xrightarrow{\operatorname{\mathsf{Exp}}_{1}} 1) - \operatorname{Pr}(\mathcal{A} \xrightarrow{\operatorname{\mathsf{Exp}}_{0}} 1) \big|.$$

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a non-negligible advantage with respect to n.

(Note in particular that since ${\mathcal A}$ runs in polynomial time, q must be polynomial in n.)

Δ

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit *b* uniformly at random, and the advantage is defined as $Adv^{CPA}(\mathcal{A}) = |Pr(\mathcal{A} \to 1 \mid b = 0) - Pr(\mathcal{A} \to 1 \mid b = 1)|$.

2. Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2d/2^{n-1}$.

Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not interesting for our purpose.

For $i, j \leq Q$, let $\texttt{Twice}_{i,j}$ be the event " $\exists k_i, k_j < d : !V_i + k_i = !V_j + k_j \pmod{2^n}$ ", which is equivalent to " $\exists k_i |k| < d$ and $!V_i - !V_j = k \pmod{2^n}$. As the IVs are chosen uniformly and independently, $!V_i - !V_j$ is uniform modulo 2^n and $\Pr(\texttt{Twice}_{i,j}) \leq 2^{-n}(2d-1)$. (The inequality is strict when $2d - 1 > 2^n$, in which case $\Pr(\texttt{Twice}_{i,j}) = 1$.) Then,

$$\Pr(\texttt{Twice}) \leq \sum_{1 \leq i \neq j \leq Q} \Pr(\texttt{Twice}_{i,j}) = Q(Q-1)2^{-n}(2d-1) \leq 2^{1-n}Q^2d.$$

3. Assume the PRF *F* is replaced by a uniformly chosen function $f : \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of *d*, *n* and the number of encryption queries *Q*.

If Twice does not occur, then all the $IV_i + j \pmod{2^n}$ for $1 \le i \le Q$ and $0 \le j < d$ are pairwise distinct. Then the values of f at these points are independent and uniformly distributed, since $f : \{0,1\}^n \to \{0,1\}^n$ is chosen uniformly at random. Therefore, all the C_j^i are also independent and uniformly distributed regardless of the value of b, so that $Pr(\neg Twice \land \mathcal{A} \to 1 \mid b = 0) = Pr(\neg Twice \land \mathcal{A} \to 1 \mid b = 1)$. It follows that

$$\begin{split} \mathsf{Adv}^{\mathsf{CPA}}_{\mathcal{U}}(\mathcal{A}) &= |\mathrm{Pr}(\mathtt{Twice} \land \mathcal{A} \to 1 \mid b = 0) - \mathrm{Pr}(\mathtt{Twice} \land \mathcal{A} \to 1 \mid b = 1)| \\ &= |\mathrm{Pr}(\mathcal{A} \to 1 \mid b = 0, \mathtt{Twice}) - \mathrm{Pr}(\mathcal{A} \to 1 \mid b = 1, \mathtt{Twice})| \operatorname{Pr}(\mathtt{Twice}) \\ &\leq \mathrm{Pr}(\mathtt{Twice}) \leq 2^{1-n}Q^2 d. \end{split}$$

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on PRF *F*, then there exists a probabilistic polynomial-time adversary B against the PRF *F*. Give a lower bound on the advantage degradation of the reduction.

 \mathbb{R} Assume that \mathcal{A} is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We build an adversary \mathcal{B} against the underlying PRF F as follows:

- 1. Choose $b \in \{0,1\}$ uniformly at random.
- 2. For each encryption query (M^0, M^1) from \mathcal{A} , encrypt M^b using the given scheme, that is,
 - (a) Choose $IV \in \{0,1\}^n$ uniformly at random.
 - (b) For j = 0 to d 1, send a query for IV + j and with the reply f_j compute $C_j = M_j^b \oplus f_j$.
 - (c) Send IV $||C_0|| \dots ||C_{d-1}$ back to \mathcal{A} .
- 3. When A finally outputs a bit $b' \in \{0,1\}$, output 1 if b' = b and 0 otherwise.

The advantage of $\mathcal B$ against the PRF F is

$$\mathsf{Adv}_F^{\mathsf{PRF}}(\mathcal{B}) = |\operatorname{Pr}(\mathcal{B} \to 1 \mid \mathsf{PRF}) - \operatorname{Pr}(\mathcal{B} \to 1 \mid \mathsf{Unif})|$$

where PRF is the experiment in which replies to \mathcal{B} are computed by calling F and Unif is the one in which replies to \mathcal{B} are computed from a uniformly chosen random function f.

Considering the two terms separately gives

$$Pr(\mathcal{B} \to 1 \mid E) = \frac{1}{2} (Pr(b' = 0 \mid E, b = 0) + Pr(b' = 1 \mid E, b = 1))$$
$$= \frac{1}{2} (1 + Pr(\mathcal{A} \to 1 \mid E, b = 1) - Pr(\mathcal{A} \to 0 \mid E, b = 0))$$

where E is either PRF or Unif. Therefore

$$\mathsf{Adv}_F^{\mathsf{PRF}}(\mathcal{B}) \geq \frac{1}{2} \left(\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - \mathsf{Adv}_{\mathcal{U}}^{\mathsf{CPA}}(\mathcal{A}) \right) \geq \frac{1}{2} \mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - 2^{1-n} Q^2 d$$

using the previous question. Thus, if $Adv^{CPA}(\mathcal{A})$ is non-negligible then so is $Adv^{PRF}_{\mathcal{F}}(\mathcal{B})$, which is then about a half of $Adv^{CPA}(\mathcal{A})$.

Exercise 2.

weak PRF

In the PRF security game, the adversary may adaptively make function evaluation queries: for i = 1, 2, ..., it sends x_i of its choice, and gets $F_k(x_i)$ (resp. $f(x_i)$) from the challenger, where F_k is the PRF (resp. f is the uniformly chosen function). A weak-PRF consists of the same algorithms as a PRF, but the queries are modified as follows: the adversary does not get to see $F_k(x_i)$ (resp. $f(x_i)$) for **an input** x_i **of its choice**, but instead every time the adversary requests a new pair, **the challenger samples a fresh uniform** x_i and sends $(x_i, F_k(x_i))$ (resp. $(x_i, f(x_i))$) to the adversary.

1. Give a formal definition of a weak-PRF, based on a security game.

A function $F : \{0,1\}^n \times \{0,1\}^m \to \{0,1\}^d$ is a weak-PRF if for every efficient (e.g., ppt) adversary \mathcal{A} , we have that $Adv(\mathcal{A})^{wPRF} := |\Pr[\mathcal{A} \to 1 \text{ in } \operatorname{Exp}_{Real}] - \Pr[\mathcal{A} \to 1 \text{ in } \operatorname{Exp}_{Inif}]|$ is negligible. Exp_{Real} is when \mathcal{C} samples k uniformly in $\{0,1\}^n$ and sets $f = F_k$ in the experiment below. Exp_{Real} is when \mathcal{C} samples $f : \{0,1\}^m \to \{0,1\}^d$ uniformly.

Challenger \mathcal{C}		Algorithm ${\cal A}$
Samples <i>f</i>		
Samples $x \leftarrow U(\{0,1\}^m)$ $(x, f(x)) \longrightarrow$	\leftarrow ping	(as many times as desired)
		Output a bit b.

- 2. Show that a PRF is a weak-PRF, by providing a security reduction.
 - \mathbf{W} Here is the reduction:

When C uses F_k , the view of A is as in experiment Exp_{Unif} above. When C uses f, the view of A is as in experiment Exp_{wPRF} above. Hence $\text{Adv}(\mathcal{B})^{PRF} = \text{Adv}(\mathcal{A})^{wPRF}$.

3. Assuming that a weak-PRF exists, build a weak-PRF that is not a PRF.

Even that F be a secure weak-PRF. For all key k, we define F'_k as F_k , except that $F'_k(0^m) = 0^d$.

We have that F' is not a PRF, an adversary can query 0^m and output b = 1 if and only if the reply is 0^d . In the Real experiment, this adversary outputs b = 1 with probability 1. In the Unif experiment, it outputs b = 1 with probability $1/2^d$. The advantage is non-negligible.

Let us now argue that F' is still a weak PRF. The probability that during the experiment the challenger samples 0^m to answer one of the attacker's queries is $\leq Q \cdot 2^{-m}$, where Q is the number of queries made by the adversary. Let us call this event *Bad*. Assume we have an attacker \mathcal{A} for F. We build an attacker \mathcal{B} for F' as follows:

We have:

 $\begin{aligned} \mathsf{Adv}(\mathcal{B} \text{ for } F) &= \left| \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Unif} | Bad] \Pr[Bad] \Pr[Bad] + \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Unif} | \overline{Bad}] \Pr[\overline{Bad}] \Pr[\overline{Bad}] \\ &- \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Real} | Bad] \Pr[Bad] + \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Real} | \overline{Bad}] \Pr[\overline{Bad}] \right| \\ &\leq \Pr[Bad] + \Pr[\overline{Bad}] \left| \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Unif} | \overline{Bad}] - \Pr[\mathcal{B} \to 1 \text{ in } \mathsf{Exp}_{Real} | \overline{Bad}] \right| \\ &= \Pr[Bad] + \Pr[\overline{Bad}] \left| \Pr[\mathcal{A} \to 1 \text{ in } \mathsf{Exp}_{Unif} | \overline{Bad}] - \Pr[\mathcal{A} \to 1 \text{ in } \mathsf{Exp}_{Real} | \overline{Bad}] \right|. \end{aligned}$

Note that the last term is $\leq Adv(A \text{ for } F')$. Hence:

 $\operatorname{Adv}(\mathcal{B} \text{ for } F) \leq Q \cdot 2^{-m} + \operatorname{Adv}(\mathcal{A} \text{ for } F').$

4. What is the difference between a PRG and a weak-PRF?

In a PRG experiment for a univariate function G, the challenger uniformly samples a (secret) seed s and sends G(s) to the adversary. In a weak-PRF experiment for a bivariate function F, the challenger uniformly samples a (secret) key k, then for the Q queries of the attacker, is samples uniform x_i 's and sends back to the attacker the xi's together with either $F(k, x_i)$. Note that if Q = 1, then the games are similar, and x_1 can even be considered as part of the description of G (formally, we can set $G(\cdot) = F(\cdot, x_1)$). So the main difference between a PRG and a weak-PRF is that in a weak-PRF the adversary can query as many inputs as it wants. This is different from the PRG case where the description of G is fixed and the size of the output if fixed (the adversary cannot ask for more).

Alternatively, one may compare $G(\cdot)$ and $F(k, \cdot)$: in the first case the seed s stays secret, in the second case the input x_i is provided to the adversary.

Let G = (g) be a cyclic group of known prime order p. We recall that the DDH hardness assumption states that the distributions (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) are computationally indistinguishable when a, b and c are independently and uniformly distributed in $\mathbb{Z}/p\mathbb{Z}$. Let $k \in \mathbb{Z}/p\mathbb{Z}$ a uniformly chosen key. We consider the function $F_k : h \in G \mapsto h^k \in G$.

- **5.** Let $Q \ge 1$. Consider the (randomized) map ϕ that takes $(g_1, g_2, g_3) \in G^3$ as input, samples $(x_i, y_i) \in (\mathbb{Z}/p\mathbb{Z})^2$ uniformly and independently for $i \le Q$ and returns $(g_1^{x_i}g^{y_i}, g_3^{x_i}g_2^{y_i})_{i \le Q}$.
 - Show that if (g₁, g₂, g₃) = (g^a, g^b, g^{ab}), then the output is distributed as (g^{r_i}, g^{br_i})_{i≤Q} for r_i's in ℤ/pℤ uniform and independent.
 - Show that if (g₁, g₂, g₃) = (g^a, g^b, g^c) for c ≠ ab, then the output is distributed as (g^{r_i}, g^{s_i})_{i≤Q} for (r_i, s_i)'s in (ℤ/pℤ)² uniform and independent.

In the case where c = ab, we have

$$(g_1^{x_i}g_3^{y_i}, g_3^{x_i}g_2^{y_i}) = (g_1^{ax_i+y_i}, g_2^{abx_i+by_i}).$$

So, by letting $r_i = ax_i + y_i$, this is (g^{r_i}, g^{br_i}) . Moreover, as the y_i 's are uniform in \mathbb{Z}_p and independent of the x_i 's and a, the r_i 's are also uniform. Finally, as the y_i 's are all independent, then so are the r_i 's.

In the case where $c \neq ab$, we have $(g_1^{x_i}g^{y_i}, g_3^{x_i}g_2^{y_i}) = (g^{r_i}, g^{s_i})$, where

$$\left(\begin{array}{c} r_i\\ s_i\end{array}\right) = \left(\begin{array}{c} a & 1\\ c & b\end{array}\right) \cdot \left(\begin{array}{c} x_i\\ y_i\end{array}\right).$$

As $c \neq ab$ (and p is prime), the matrix is invertible. Hence, it induces a bijection over \mathbb{Z}_p^2 . As the (x_i, y_i) 's are uniform and independent, we conclude that so are the (r_i, s_i) 's.

6. Show that F_k is a weak-PRF under the DDH hardness assumption.

Hint: set "k = b" and use the previous question to build the weak PRF challenger.

from Let $\mathcal A$ be a weak-PRF attacker against F. Let us build an algorithm $\mathcal B$ against the DDH assumption.

Let us analyze the above game. If c = ab, then for each query, algorithm \mathcal{A} receives $h_i = g^{r_i}$ and $t_i = g^{br_i}$ where $b \leftarrow U(\mathbb{Z}_p)$ stays the same throughout the experiment. Moreover, as the r_i 's are uniform in \mathbb{Z}_p and independent, the h_i 's are uniform and independent in G. So \mathcal{A} 's view is exactly the same as if it were given oracle access to F as in the weak-PRF game.

Now, if $c \neq ab$, adversary A receives $(h_i, t_i) = (g^{r_i}, g^{s_i})$, where the (r_i, s_i) 's are uniform and independent. So the (h_i, t_i) 's are also uniform and independent in G^2 . Moreover the answers of B are consistent, meaning that each h_i always comes with the same t_i (that's why algorithm B is keeping a table!). Then the adversary's view is the same as if it were oracle access to a uniform map f. To conclude, it holds that

$$\begin{aligned} \mathsf{Adv}(\mathcal{B}) &= |\Pr(\beta' = 1|\beta = 1) - \Pr(\beta' = 1|\beta = 0)| \\ &= |\Pr(\beta' = 1|c = ab) - \Pr(\beta' = 1|c \leftarrow U(\mathbb{Z}_p))| \\ &= |\Pr(\beta' = 1|c = ab) - \Pr(\beta' = 1|c \neq ab) \Pr(c \neq ab|c \leftarrow U(\mathbb{Z}_p)) - \Pr(\beta' = 1|c = ab) \Pr(c = ab|c \leftarrow U(\mathbb{Z}_p))| \\ &= \frac{p-1}{p} \cdot |\Pr(\beta' = 1|c = ab) - \Pr(\beta' = 1|c \leftarrow U(\mathbb{Z}_p \setminus \{ab\}))| \\ &= \frac{p-1}{p} \cdot \mathsf{Adv}(\mathcal{A}). \end{aligned}$$

Here, the last equality comes from the above discussion. Then if the DDH assumption holds, the advantage of A is negligible, and F is a secure weak-PRF.

7. Is F_k a secure PRF? Justify your answer.

No. Consider the following adversary A. It queries g and g^2 and gets two values x and x_2 . It returns 1 if and only if $x_2 = x^2$ and 0 otherwise. In the PRF game, algorithm A always outputs 1. In the case of the uniform game, it is wrong if and only if $F(g^2) = F(g)^2$, which happens with probability 1/p. Its advantage is then $\frac{p-1}{n}$, which is non-negligible.

Exercise 3.

CBC-MAC

Let $F : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a PRF, d > 0 and L = nd. Prove that the following modifications of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define $t_i := F(K, t_{i-1} \oplus m_i)$ for $i \in [1, d]$ and $t_0 := IV = 0$.

1. Modify CBC-MAC so that a random $IV \leftrightarrow U(\{0,1\}^n)$ (rather than $IV = \mathbf{0}$) is used each time a tag is computed, and the output is (IV, t_d) instead of t_d alone.

If an adversary asks for a tag (t_0, t_d) of any (m_1, \ldots, m_d) , then it can output $(t_0 \oplus x, t_d), (m_1 \oplus x, \ldots, m_d)$ as a forgery, as it is a valid pair of a tag and a message. Such an adversary wins everytime and has non-negligible advantage in the unforgeability game.

Figure 1: CBC-MAC

Figure 2: ECBC-MAC

2. Modify CBC-MAC so that all the outputs of *F* are output, rather than just the last one.

If an adversary aks for a tag (t_1, t_2, \ldots, t_d) of any message $(0, m_2, \ldots, m_d)$, then it can output $(t_2, t_3, \ldots, t_d, t_1), (m_2 \oplus t_1, m_3, \ldots, m_d, t_d)$ as a forgery as it is a valid pair (tag, message). Such an adversary wins everytime. Indeed, $F(K, m_2 \oplus t_1 \oplus 0) = t_2$ by definition and $F(K, t_d \oplus t_d) = t_1$ since $m_1 = 0$.

We now consider the following ECBC-MAC scheme: let $F : K \times X \to X$ be a PRF, we define $F_{ECBC} : K^2 \times X^{\leq L} \to X$ as in Figure 2, where K_1 and K_2 are two independent keys.

If the message length is not a multiple of the block length *n*, we add a pad to the last block: $m = m_1 | \dots | m_{d-1} | (m_d || pad(m))$.

3. Show that there exists a padding for which this scheme is not secure.

```
R
```

We could for instance pad with as many 0s as necessary. Let m of length < n. Then, m||pad(m) = m||0||pad(m||0). As such we build an adverary for the unforgeability game that:

- asks for a tag for m of length < n.
- Gets a tag t.
- Returns the forgery (m||0,t).

This adversary always wins and as such breaks the unforgeability of the scheme.

For the security of the scheme, the padding must be invertible, and in particular for any message $m_0 \neq m_1$ we need to have $m_0 || pad(m_0) \neq m_1 || pad(m_1)$. In practice, the ISO norm is to pad with $10 \cdots 0$, and if the message length is a multiple of the block length, to add a new "dummy" block $10 \cdots 0$ of length *n*.

4. Prove that this scheme is not secure if the padding does not add a new "dummy" block if the message length is a multiple of the block length.

Let $m = m_1 \parallel 100$ of the length of a block, then $m = m_1 \parallel pad(m_1)$, so any valid tag for m is a valid tag for m_1 .

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k_1, k_2) . If the message length is not a multiple of the block length, then we append the ISO padding to it and then we also XOR this last block with the key k_1 . If the message length is a multiple of the block length, then we XOR this last block with the key k_2 . After that, we perform a last encryption with F(k,.) to obtain the tag.

Exercise 4.

Merkle-Damgård transform

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?

No. Take for instance x of length $B\ell(n) - 1$ for some $B \ge 2$, and $y = x \| 0$. In the transform, we start by padding x with one zero so that its length is a multiple of $\ell(n)$: we obtain y. In the rest of the process, the only thing that differs between x and y is that their "length blocks" are not the same; without this length block, x and y form a collision.

2. Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k \parallel m)$ where *H* is a collision-resistant hash function. Show that this is not a secure MAC when *H* is constructed via the Merkle-Damgård transform.

The goal is to construct (m, t) with $Verify_k(m, t) = 1$, having oracle access to Mac_k but without querying $Mac_k(m)$ itself.

With Merkle-Damgård, the function H^s divides the message $k \parallel m$ in p blocks x_1, \ldots, x_p of size ℓ (padding the last block x_p with a Padding Block PB so that $x_p \parallel PB$ has size ℓ) and then adding a new block x_{p+1} of length ℓ depending on the bit length of $k \parallel m$. Then the Merkle-Damgård construction uses a (fixed-length) collision-resistant hash function h to compute its output as follows:

 $H^{s}(k \parallel m) = h^{s}(x_{p+1}, h^{s}(x_{p} \parallel \text{PB}, h^{s}(x_{p-1}, h^{s}(\dots, h^{s}(x_{1}, \text{IV})))))).$

Given $H^s(k \parallel m)$, anyone can compute $H^s(k \parallel m \parallel PB \parallel x_{p+1} \parallel \omega)$ for any ω ; for instance, if ω is of size ℓ , using $h^s(x'_{p+2}, h^s(\omega, H^s(k \parallel m)))$ where x'_{p+2} only depends on the length of $k \parallel m \parallel PB \parallel x_{p+1} \parallel \omega$ and can be publicly computed.