
M1 – Cryptography and Security (2022/2023) A. Passelègue and J. Felderhoff

TD 9: Digital Signatures

Exercise 1. Random Messages and Signatures
A signature scheme (KeyGen, Sign, Verify) is existentially unforgeable under random-message attack
(euRMA-secure) if for all ℓ polynomially bounded with respect to the security parameter n, and all
probabilistic polynomial-time adversary A, the success probability of A in the following game is
negligible (as a function of n).

• The challenger runs KeyGen to obtain a key-pair (sk, vk). It samples ℓ messages m1, . . . , mℓ uni-
formly from the (finite) set of messages. It computes σ1 ← Sign(sk, m1), . . . , σℓ ← Sign(sk, mℓ).
It sends vk, (m1, σ1), . . . , (mℓ, σℓ) to the adversary.

• After receiving the latter from the challenger, the adversary produces a pair (m, σ).

• The adversary succeeds if m /∈ {m1, . . . , mℓ} and if Verify(vk, m, σ) = 1.

1. Show that an euRMA-secure signature scheme may not be euCMA-secure (existentially unforge-
able under Chosen Message Attacks).

The goal of the exercise is to show that an euCMA-secure signature scheme Σ′ =(KeyGen’, Sign’,
Verify’) for messages in {0, 1}n may be built from an euRMA-secure signature scheme Σ =(KeyGen,
Sign, Verify) for messages in {0, 1}2n. We consider the following algorithms KeyGen’ and Sign’.

• Algorithm KeyGen’ runs KeyGen twice, and obtains (sk(0), vk(0)) and (sk(1), vk(1)). It sets sk′ =
(sk(0), sk(1)) and vk′ = (vk(0), vk(1)).

• On inputs m ∈ {0, 1}n and sk′ = (sk(0), sk(1)), algorithm Sign’ samples r ∈ {0, 1}n and m(0) ∈
{0, 1}n uniformly and independently, sets m(1) = m(0) ⊕m, computes σ(0) ← Sign(sk(0), r∥m(0))

and σ(1) ← Sign(sk(1), r∥m(1)), and returns σ′ = (r, m(0), m(1), σ(0), σ(1)).

2. Propose an algorithm Verify’ such that Σ′ is correct and not trivially insecure.

3. Show that if r was always set to 0 (instead of being sampled uniformly for every new signature),
then Σ′ would not be euCMA-secure. Show that if the same r has been sampled twice, an
adversary is able to produce signature forgeries.

We now consider a probabilistic polynomial-time euCMA-adversary A′ on Σ′, and aim at showing
that its success probability is negligible (under the assumption that Σ is euRMA-secure). Let ℓ be the
maximum number of signature queries that A makes. Let m1, . . . , mℓ ∈ {0, 1}n be the messages sub-
mitted by A′ to the challenger. Let (ri, m(0)

i , m(1)
i , σ

(0)
i , σ

(1)
i) be the signature the challenger computes

for message mi. We let (m∗, σ∗) = (m∗, (r∗, m(0)
∗ , m(1)

∗ , σ
(0)
∗ , σ

(1)
∗)) denote the forgery produced by the

adversary. We define the following events:

• Repeat: “There exist i ̸= j such that ri = rj.”

• Forge
(0): “Verify(vk(0), r∗∥m

(0)
∗ , σ

(0)
∗) = 1 and r∗∥m(0)

∗ /∈ {ri∥m
(0)
i : i ≤ ℓ}.”

• Forge
(1): “Verify(vk(1), r∗∥m

(1)
∗ , σ

(1)
∗) = 1 and r∗∥m(1)

∗ /∈ {ri∥m
(1)
i : i ≤ ℓ}.”

4. Show that if A′ succeeds, then at least one of Repeat, Forge
(0) and Forge

(1) occurs.

5. Give an upper bound on the probability of Repeat.

1

6. Show that if the probability that Forge
(0) is non-negligible, then there exists a probabilistic

polynomial-time adversary A against euRMA-security of Σ.

7. Conclude.

Exercise 2. Binary Trees and Signatures
The notion of existential unforgeability under single-message attack for a signature scheme Π =
(Gen,Sign,V) states that no adversary can output a valid tuple (m′, σ) with non-negligible probability
by only querying once the signing oracle for m with m ̸= m′.
The goal of this exercise is to go from euSMA-security to euCMA-security. The idea is, for each bit of
the message, to generate two new public keys, sign them using the public key from the previous bit,
and use one of them for the next bit (depending on the value of the current bit). This can be seen as
building a binary tree.
Let F be a secure PRF. It will come in handy to make sure we use the same randomness to generate
the keys (as we do not have memory to store them, from one signature to the next one).
We assume the following about the PRF: its output is long enough to be given to Gen as randomness
seed, and there is some one-to-one deterministic padding in the case where the input is too small.
Here is the construction, where m∣∣i denotes the first i bits of m and m∣∣0 is the empty word ε:

Gen⋆(1λ): Generate (vkε, skε)← Gen(1λ) and two PRF keys k, k′. Return vk = vkε and sk = (skε, k, k′).

Sign⋆(sk, m): For i = 0 to n do the following: Compute rm|i0 := F(k, m∣∣i0), and rm|i1 := F(k, m∣∣i1).
Then generate vkm|i1, skm|i1 ← Gen(1λ; rm|i0) and vkm|i0, skm|i0 ← Gen(1λ; rm|i1). Then, sign σm|i ←
Sign(skm|i , (vkm|i0, vkm|i1); r′m|i), where r′m|i ← F(k′, m∣∣i).
Compute σm ← Sign(skm, m; F(k′, m)).

Then, return
(
{σm|i , vkm|i0, vkm|i1}i, σm

)
.

1. Give a verification algorithm V⋆. How many times does it call V, depending on the message size?
How many public keys are manipulated (i.e. generated, used to sign or signed) during one call
to Sign⋆?

In order to prove the euCMA-security of this scheme, we introduce the following hybrid H1: the game
is the same as in the euCMA setup (we will call it H0), except that F(k, ·) is replaced by a truly random
function, whose table is built adaptively.

2. Show that H0 and H1 are indistinguishable.
Then we introduce H2, which is as H1 except that this time F(k′, ·) is replaced by a truly uniform
function, whose table is also built adaptively.

3. Show that H1 and H2 are indistinguishable.

4. Show that under the euSMA security of the base signature, no adversary has non-negligible
advantage in the game H2.

5. Conclude.

Exercise 3. Random Oracle Model
In this exercise we show a scheme that can be proven secure in the random oracle model, but is
insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash
function H : {0, 1}∗ → {0, 1}n). Let Π be a signature scheme that is euCMA-secure in the standard
model.
Let y ∈ {0, 1}n and define the following signature scheme Πy. The signing and verifying keys are
obtained by running Π.Gen(1λ). Signature of a message m is computed out as follows: if H(0) = y
then output the secret key, if H(0) ̸= y then return a signature computed using Π.Sign. To verify a
message, if y = H(0) then accept any signature for any message and otherwise, verify it using Π.Verify.

2

1. Prove that for any value y, the scheme Πy is euCMA-secure in the random oracle model.

2. Show that there exists a particular y for which Πy is insecure when the hash function is not
modeled as a ranom oracle anymore.

3

	1. Random Messages and Signatures
	2. Binary Trees and Signatures
	3. Random Oracle Model

