TD 8: IND-CCA Encryptions

Exercise 1.

CCA1 vs CCA2

Let $\Pi_0 = (\text{Keygen}_0, \text{Encrypt}_0, \text{Decrypt}_0)$ be an IND-CCA2-secure public-key encryption scheme which only encrypts single bits (i.e., the message space is $\{0,1\}$). We consider the following multi-bit encryption scheme $\Pi_1 = (\text{Keygen}_1, \text{Encrypt}_1, \text{Decrypt}_1)$, where the message space is $\{0,1\}^L$ for some Lpolynomial in the security parameter λ .

Keygen₁(1^{λ}): Generate a key pair (*PK*, *SK*) $\leftarrow \Pi_0$.Keygen₀(1^{λ}). Output (*PK*, *SK*).

Encrypt₁(*PK*, *M*): In order to encrypt $M = M[1] \dots M[L] \in \{0, 1\}^L$, do the following.

- 1. For i = 1 to L, compute $C[i] \leftarrow \Pi_0.\mathsf{Encrypt}_0(PK, M[i])$.
- 2. Output C = (C[1], ..., C[L]).
- **Decrypt**₁(*SK*, *C*) Parse the ciphertext *C* as C = (C[1], ..., C[L]). Then, for each $i \in \{1, ..., L\}$, compute $M[i] = \Pi_0$.Decrypt₀(*SK*, *C*[*i*]). If there exists $i \in \{1, ..., L\}$ such that $M[i] = \bot$, output \bot . Otherwise, output $M = M[1] ... M[L] \in \{0, 1\}^L$.
 - **1.** Show that Π_1 does not provide IND-CCA₂ security, even if Π_0 is secure in the IND-CCA₂ sense.

Let $\Pi = (\text{Keygen}, \text{Encrypt}, \text{Decrypt})$ be an IND-CCA2-secure public-key encryption scheme with message space $\{0,1\}^L$ for some $L \in \mathbb{N}$. We consider the modified public-key encryption scheme $\Pi' = (\text{Keygen'}, \text{Encrypt'}, \text{Decrypt'})$ where the message space is $\{0,1\}^{L-1}$ and which works as follows.

Keygen' (1^{λ}) : Generate two key pairs $(PK_0, SK_0) \leftarrow \text{Keygen}(1^{\lambda}), (PK_1, SK_1) \leftarrow \text{Keygen}(1^{\lambda}).$ Define $PK := (PK_0, PK_1), SK := (SK_0, SK_1).$

Encrypt'(*PK*, *M*): In order to encrypt $M \in \{0, 1\}^{L-1}$, do the following.

- 1. Choose a random string $R \leftarrow U(\{0,1\}^{L-1})$ and define $M_L = M \oplus R \in \{0,1\}^{L-1}$ and $M_R = R$.
- 2. Compute $C_L \leftarrow \Pi$.Encrypt $(PK_0, 0 || M_L)$ and $C_1 \leftarrow \Pi$.Encrypt $(PK_1, 1 || M_R)$.

Output $C = (C_L, C_R)$.

- **Decrypt**'(*SK*, *C*) Parse *C* as (C_L , C_R). Then, compute $\tilde{M}_L = \Pi$.Decrypt(*SK*₀, C_L) and $\tilde{M}_R = \Pi$.Decrypt(*SK*₁, C_R). If $\tilde{M}_L = \bot$ or $\tilde{M}_R = \bot$, output \bot . If the first bit of M_L (resp. M_R) is not 0 (resp. 1), return \bot . Otherwise, parse \tilde{M}_L as $0||M_L$ and \tilde{M}_R as $1||M_R$, respectively, where M_L , $M_R \in \{0,1\}^{L-1}$, and output $M = M_L \oplus M_R \in \{0,1\}^{L-1}$.
 - 2. Show that the modified scheme Π' does not provide IND-CCA2 security, even if the underlying scheme Π does.
 - **3.** Show that, if Π provides IND-CCA1 security, so does the modified scheme Π' . Namely, show that an IND-CCA1 adversary against Π' implies an IND-CCA1 adversary againt Π .

Exercise 2.

Recall the ElGamal public key encryption scheme from the lecture.

ElGamal Encryption

• KeyGen (1^{λ}) : Choose a group G with generator g and order $p = O(2^{\lambda})$. Sample $x \leftarrow U(\mathbb{Z}_p)$ and return:

$$pk := (G, g, p, g^x)$$
 and $sk := x$

- Enc(pk, $m \in G$): Sample $r \leftarrow U(\mathbb{Z}_p)$ and output $(c_1, c_2) = (g^r, (g^x)^r \cdot m)$.
- Dec(sk, c_1, c_2): output $m = c_2 \cdot c_1^{-sk}$.
- **1.** Show that for any $m, m' \in G$, and $(c_1, c_2) := \text{Enc}(pk, m)$ and $(c'_1, c'_2) := \text{Enc}(pk, m')$, it holds that $(c_1 \cdot c'_1, c_2 \cdot c'_2)$ is a valid ciphertext for $m \cdot m'$. We say that the scheme is homomorphic for multiplication.
- **2.** Provide a modification of the scheme such that it is now *additively* homomorphic instead of multiplicatively. *Hint: you may want to choose* $\mathcal{M} = \{m \in \mathbb{Z}_p, |m| \leq \text{poly}(\lambda)\}$ *as your message space.*
- **3.** Show that the (genuine) ElGamal encryption scheme is not IND-CCA2 secure. *Remark:* No homomorphic encryption scheme can be IND-CCA2 secure.

Exercise 3.

Recall the LWE-based encryption scheme from the lecture.

• KeyGen (1^{λ}) : Let m, n, q, B be integers such that m > n and $q > 12mB^2$. Sample $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s} \leftarrow U((-B, B]^n)$ and $\mathbf{e} \leftarrow U((-B, B]^m)$. Return

$$\mathsf{pk} := (\mathbf{A}, b = \mathbf{As} + \mathbf{e})$$
 and $\mathsf{sk} := \mathbf{s}$.

• Enc(pk, $m \in \{0,1\}$): Sample (**t**, **f**, f') $\leftarrow U((-B, B]^m \times (-B, B]^n \times (-B, B])$ and output

$$(c_1, c_2) = (\mathbf{t}^\top \mathbf{A} + \mathbf{f}^\top, \mathbf{t}^\top \mathbf{b} + f' + \lfloor \frac{q}{2} \rfloor m).$$

- Dec(sk, c_1, c_2): take the representative of $\mu = c_2 c_1 \cdot sk$ in (-q/2, q/2] and return 0 if it has norm < q/4, 1 otherwise.
- 1. Show that this scheme is not IND-CCA2 secure.

Exercise 4.

Fujisaki-Okamoto Transform

We are looking here at different modifications of the Fujisaki-Okamoto (FO) transform that fail at providing CCA2 security. Let (Gen, Enc, Dec) be a public-key encryption scheme assumed to be IND-CPA secure with message space $\{0,1\}^{k+\ell}$. We recall the FO transform, where *H* is a hash function that is modeled as a RO.

KeyGen (1^{λ}) : Sample and return $(pk, sk) \leftarrow \text{Gen}(1^{\lambda})$.

- $Enc'(pk, m \in \{0, 1\}^k)$: Sample $r \leftarrow U(\{0, 1\}^\ell)$ and return c = Enc(pk, m||r; H(m||r)), where H(m||r) is the randomness used by the algorithm.
- Dec'(sk, c): Compute $m||r \leftarrow \text{Dec}(sk, c)$ and return m if c = Enc(pk, m||r; H(m||r)). Otherwise, return \perp .
- **1.** What happens if $\ell = O(\log(\lambda))$?

For the next questions, do not forget to look at the previous exercises.

- **2.** Show that there exists an IND-CPA secure encryption scheme such that if we replace every instance of H(m||r) with H(r), then its FO transform is not IND-CCA2 secure.
- **3.** Show that there exists an IND-CPA secure encryption scheme such that if we always return *m* in the decryption algorithm, without checking the consistency of the randomness used in the ecnryption, then its FO transform is not IND-CCA2 secure.

LPS Encryption