TD 6: Hash Functions

Exercise 1.

Expanding a Hash Function

Suppose $h_1 : \{0,1\}^{2n} \to \{0,1\}^n$ is a collision-resistant hash function.

- **1.** Define $h_2 : \{0,1\}^{4n} \to \{0,1\}^n$ as follows: Write $x = x_1 || x_2$ with $x_1, x_2 \in \{0,1\}^{2n}$; return the value $h_2(x) = h_1(h_1(x_1) || h_1(x_2))$. Prove that h_2 is collision-resistant.
- **2.** For $i \ge 2$, define $h_i : \{0,1\}^{2^{i_n}} \to \{0,1\}^n$ as follows: Write $x = x_1 ||x_2|$ with $x_1, x_2 \in \{0,1\}^{2^{i-1}n}$; return $h_i(x) = h_1(h_{i-1}(x_1)||h_{i-1}(x_2))$. Prove that h_i is collision-resistant.

Exercise 2.

Ajtai's Hash Function

Let $m \ge n \ge 2$, $q \ge 2$ and B > 0 such that $mB \le q/4$, with q prime. Recall that the LWE_{*m,n,q,B*} hardness assumption states that the distribution (**A**, **As** + **e**), where **A** $\leftrightarrow U(\mathbb{Z}_q^{m \times n})$, **s** $\leftrightarrow U(\mathbb{Z}_q^n)$ and $e \leftrightarrow U((-B, B]^m)$ is computationally indistinguishable from $U(\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m)$. Define the following hash function:

$$\begin{aligned} H_{\mathbf{A}} : \{0,1\}^m &\to \mathbb{Z}_q^n \\ \mathbf{x} &\mapsto \mathbf{x}^\top \cdot \mathbf{A} \bmod q \end{aligned}$$

- **1.** (a) Recall the definition of the compression factor, and compute it for *H*.
 - (b) Show how to break the LWE_{*m*,*n*,*q*,*B*} assumption given a vector $\mathbf{x} \in \{-1, 0, 1\}^m$ such that $\mathbf{x}^\top \mathbf{A} = \mathbf{0} \mod q$ and $\mathbf{x} \neq \mathbf{0}$.
 - (c) Conclude on the collision-resistance of *H*.

Exercise 3.

Merkle-Damgård transform

Pedersen's Hash Function

- 1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
- **2.** Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k \parallel m)$ where *H* is a collision-resistant hash function. Show that this is not a secure MAC when *H* is constructed via the Merkle-Damgård transform.

Exercise 4.

Pedersen's hash function is as follows:

- Given a security parameter *n*, algorithm Gen samples (G, g, p) where $G = \langle g \rangle$ is a cyclic group of known prime order *p*. It then sets $g_1 = g$ and samples g_i uniformly in *G* for all $i \in \{2, ..., k\}$, where $k \ge 2$ is some parameter. Finally, it returns $(G, p, g_1, ..., g_k)$.
- The hash of any message $M = (M_1, \dots, M_k) \in (\mathbb{Z}/p\mathbb{Z})^k$ is $H(M) = \prod_{i=1}^k g_i^{M_i} \in G$.
- **1.** Bound the cost of hashing, in terms of *k* and the number of multiplications in *G*.
- **2.** Assume for this question that *G* is a subgroup of prime order *p* of $(\mathbb{Z}/q\mathbb{Z})^{\times}$, where q = 2p + 1 is prime. What is the compression factor in terms of *k* and *q*? Which *k* would you choose? Justify your choice.
- **3.** Assume for this question that k = 2. Show that Pedersen's hash function is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for *G*.
- **4.** Same question as the previous one, with $k \ge 2$ arbitrary.