TD 2: Pseudo Random Generators

Exercise 1.

Let $G : \{0,1\}^n \to \{0,1\}^m$ be a function, with m > n.

PRG implies smCPA with hybrid argument

1. Recall the definition of a PRG from the lecture.

Let Enc: $\{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^m$ defined by Enc $(k,m) = G(k) \oplus m$.

- 2. Give the associated decryption algorithm.
- 3. Recall the smCPA security notion from the lecture.

Let $m_1, m_2 \in \{0, 1\}^m$ be arbitrary messages.

- **4.** What is the statistical distance between the distributions $U_1 = m_1 \oplus U(\{0,1\}^m)$ and $U_2 = m_2 \oplus U(\{0,1\}^m)$?
- 5. Prove that if G is a PRG, then (Enc, Dec) is smCPA-secure using a hybrid argument.

(*Bonus*) We just proved that $G PRG \Rightarrow (Enc, Dec) \text{ smCPA-secure}$. We are going to prove (Enc, Dec) not smCPA-secure $\Rightarrow G$ not PRG.

6. Let A be an distinguisher between two games G_0 and G_1 . We say that A wins if it output 0 (resp 1) during the game G_0 (resp G_1). Show that

$$\mathsf{Adv}_{\mathcal{A}}(G_0, G_1) = 2 \cdot \left| \Pr_{b \sim \mathcal{U}(\{0,1\})} (\mathcal{A} \text{ wins in } G_b) - \frac{1}{2} \right|$$

7. Assume that A is an adversary with non-negligible advantage ε against the smCPA-security of (Enc, Dec). Construct an explicit distinguisher between $U(\{0,1\}^m)$ and $G(U(\{0,1\}^n))$ and compute its advantage.

Exercise 2.

smCPA does not imply PRG

Enlarge your PRG

Let (Enc, Dec) be an encryption scheme over $K \times P \times \{0, 1\}^n$.

1. In this question, we assume that (Enc, Dec) is smCPA-secure. Prove that there exists a smCPA-secure encryption scheme (Enc', Dec') such that $G : k \mapsto \text{Enc}'(k, 0)$ is not a secure PRG. *Hint: try to concatenate constant bits to every ciphertext.*

Exercise 3.

Let $G: \{0,1\}^k \to \{0,1\}^{k+1}$ be a secure pseudo-random generator.

- **1.** Let $\ell < k + 1$ and define $G_{\ell} : \{0,1\}^k \to \{0,1\}^\ell$ such that $G_{\ell}(x) = [G(x)]_{1...\ell}$, where this denotes the first ℓ bits of G(x). Prove that G_{ℓ} satisfies the security notion of a PRG¹.
- **2.** Consider $G^{(1)} : \{0,1\}^k \to \{0,1\}^{k+2}$ defined as follows. On input $x \in \{0,1\}^k$, algorithm $G^{(1)}$ first evaluates G(x) and obtains $(x^{(1)}, y^{(1)}) \in \{0,1\}^k \times \{0,1\}$ such that $G(x) = x^{(1)} \parallel y^{(1)}$. It then evaluates *G* on $x^{(1)}$ and eventually returns $G(x^{(1)}) \parallel y^{(1)}$. Show that if *G* is a secure PRG, then so is $G^{(1)}$.

¹It is however NOT a PRG as its input size is less than its output size.

- **3. (a)** Let $n \ge 1$. Propose a construction of a PRG $G^{(n)} : \{0,1\}^k \to \{0,1\}^{k+n+1}$ based on *G*. Show that if *G* is a secure PRG, then so is $G^{(n)}$.
 - (b) Evaluate the cost of your construction.
- **4.** In this question only, we assume that $G : \{0,1\}^k \to \{0,1\}^{2k}$ is a secure PRG. Adapt the previous questions to build a secure PRG $G' : \{0,1\}^k \to \{0,1\}^{2^n \cdot k}$ for any $n \ge 1$. Evaluate the cost of your construction and compare it with the previous one.

An arbitrary-length PRG is a function G^* taking as inputs $x \in \{0,1\}^n$ and $\ell \ge 1$ in unary, and returning an element of $\{0,1\}^{\ell}$. It is said to be secure if for all ℓ polynomially bounded with respect to n, the distributions $G^*(U(\{0,1\}^n),1^{\ell})$ and $U(\{0,1\})^{\ell}$ are computationally indistinguishable.

5. Let $n \ge 1$. Propose a construction of an arbitrary-length PRG G^* based on G. Show that if G is a secure PRG, then so is G^* .

To be continued...