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PROGRAMME

Teach you just enough quantum computing to get a sense of how it affects cryptography.
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QuBITS



CLASSICAL BIT

b e {0,1}



PROBABILISTIC BIT

- Probabilistic bit: ( Z ) where p :=Pr(b=0)and g :=Pr(b=1)

- Computing on probabilistic bits

/ —
Pl (P )= ¢ by (P where at+c=1 and a,b,c,d >0
q q’ c d q b+d=1

Example: b - b@ b Example: b — b @ 1

()-()-Coo)(2)  (5)-(5)-(0 ) ()




COMPLEX NUMBERS
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/Ir
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Re * Re(z) =x
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QUANTUM BIT (QUBIT): “PROBABILISTIC BITS WITH COMPLEX PROBABILITIES”

- A qubit |¢) is an element of C? with Euclidean norm 1:
) = a-|0) + B+ 1) with a, 8 € C (called amplitude) and |a/* + | = 1

- |0), [1) is an orthonormal basis of C?. Usually defined as

0) == ( ; ) and |1) = ( ? ) which then implies a- [0) + 8- 1) = ( g )

- We call this a superposition of |0) and |1).



MEASUREMENTS

We cannot “see” qubits, we can only measure in their classical states.
Measurement: probabilistic orthogonal projection. Given |0), [1) € C?:

|0y with probability |

a0 o measure ) .
) =a-0)+8-|1) —— 1Y with probability ||



COMPUTATION

1

- A unitary matrix in C?*? is any matrix such that U- Ut = Ut . U = (O

?) where Uf is

the conjugate transpose of U:

U— Ugo + Voo - I Uor + Vor - i ut — Ugo — Voo -1 Ui — Vig - i
Uro+Vag -0 Up+vn-i)’ Uor — Vor -1 Uy — V-
- Computation: |¢p) — U - |9)
- All quantum computations are reversible:
u uf
[¥) = U-[p) = UT-U- [9) = |9)

- We call U quantum gates



QUANTUM COMPUTERS ...

.. are linear-algebra machines.



QUANTUM COMPUTERS ...

Mathematics is the art of reducing
any problem to linear algebra.

— William Stein

.. are linear-algebra machines.




EXAMPLES OF QUANTUM GATES

Example NOT-gate b — “b @ 1”

|¢>—a|o>+5-|1>—<§>—><§)—(? g>-w>



EXAMPLES OF QUANTUM GATES

0 1
|w>—oc|o>+5-|1>—<g>—><§>—<1 O)-w

Example b - b@ b

Computation is not reversible!



" yen (@Yo (1 1Y (e (avs
H-|¢)=H:-(a|0)+5-]1))=H ([3) 3 (1 1) <ﬂ) 2 (aﬂ)



HADAMARD-GATE H |

H-|w>:H-(a|0>+6~l1>)=H-<g)=\1ﬁ-<1 ])(g):g(fﬁ)
] I, 11 1T\ 1+0\ [ 1/V2
H'|O>ﬁ'(1 —1)'<o)ﬁ'<1—o><1/ﬁ>

-+ measure |0) or |1) with probability 1/2!



HADAMARD-GATE H |

(5)-3(3 2)(5)-5(a22)
wo=g (3 4) () =% (i8)-(%)

-+ measure |0) or |1) with probability 1/2!

’ V2 \ YV2+1/V2 [ 1 L
vz = L pvzmyva = 0 ) 510

- and we're back!

H- ) =H-(al0)+5-[1))



HADAMARD-GATE H Il

The outputs of the Hadamard gate applied to |0) and |1) are so important we give them

names:
o _
+= o5 (10+1)) = — (1>
L (T S PI (N

We cannot achieve the Hardmard gate with probabilistic bits = quantum advantage



MANY QUBITS



TENSOR PRODUCTS

Letv e C" and w € C™, their tensor productisv@w = (Vo - W,...,V,_1- W)
- This is the same as the rows of:
Vo Vo - Wo Vo - Wy e Vo Wm—y

Vi Vi - Wo Vi - Wy Vi Wm—q
. '(Wo Wy oo Wm—1): . . . .

Vn—1 Vp—1-Wo  Vp—q-Wqp -+ Vp_1-Wn_q



TENSOR PRODUCTS

Letv e C" and w € C™, their tensor productisv@w = (Vo - W,...,V,_1- W)

- This is the same as the rows of:

Vo Vo - Wo Vo - Wy e Vo Wiy
Vi Vi - Wo Vi - Wy Vi Wm—q
: ( Wo Wy Wm—1 ) =
Vn—1 Vp—1-Wo  Vp—q-Wqp -+ Vp_1-Wn_q

- Foranyscalarz, we havez- (v w) =(Z-V)@W=VvV® (Z-w)
- Forany vo,v; € C", we have (Vo + Vi) QW =Vy @ W + V1 @ W

- For any wp,w; € C™, we have v®@ (Wo 4+ W) = V& Wg + V ® Wy



TENSOR PRODUCTS OF SPACES

Consider

- C" = Spang(vo, ... Va—1) where e.g. vp = (1,0...,0) etc, or some other basis of C"
- C™ = Spang(wg, ... Wyn_q) where e.g. wg := (1,0...,0) etc, or some other basis of C™

We have:

- C"®C" :=Spanc(viow;: 0<i<n0<j<m)
- C"® C™ has dimension n x m

. n m . . .
XeEC"R®C" <= Ja; : Zogi<n,0§j<m Qjj- Vi @ W;



TENSOR PRODUCTS OF MATRICES

do,o0 . do,n—1 b070 A b07q71
A = . 5 B =
am-10 --- dm-1,n-1 bp_10 ... bp-1g-1
0070 . B aO,m—1 - B
A®B = : s : € ¢mpxng

ap—1,0-B - Ap_ym—1-B
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n QUBIT STATES

- Recall that a qubit |) is an element in C? with keto = matrix(2, 1, [1,0])
ketl = matrix(2, 1, [0,1])
norm 1. ket®.tensor_product (ket®), \
- A register of n qubits |¢) is an element in D, tEnsar_AretiBE(fet),
2 2 " ketl.tensor_product(ket®), \
C --0C=C. ket1.tensor_product(ketl)
~—_——
n times
- Let |0), [1) be an orthonormal basis of C?, then (

[11 [e]l ([e] ([e]

le] [1] [0] [o]
(Ibo) ® |b1) ® -+ ® [bp—_1) : bo, ..., bn_1 € {0,1}) -1 [-1 [-1 [-]

[e] [e] [1] [e]
is an orthonormal basis of C?® - -- ® C2 = C2". [e], [e], [el, [1]
~————

n times



NOTATION

- For bo,...,bp—1 € {0,1} we write
|bo by ... bp—q) = |bo) ® |b1) ® ... ® |bn_1)
- For [to), [11) - -, [thn_1) € C?, we write
|%0) [¢1) - - - [¥n-1) = [¥0) ® [¥1) ® ... @ [thn—1)
- Any |¢) € C?" of n qubits can be written as

[y) = Z ax|X)  where ax € C (called amplitude) and Z lax|* =1

xe{0,1}" xe{0,1}"



SEPARABLE STATES

An n-qubit state |+) is called separable if it can be decomposed as ) = [¢o) & [t1).

Examples
* 100) = |0) ®0)
© 3+ (/00) +101) + [10) + [11)) = =5 (10) +11)) ® 5 (|0) + 1))

ket® = matrix(2, 1, [1,0]); ketl = matrix(2, 1, [06,1])
(1/sqrt(2)*ketd® + 1/sqrt(2)*ketl).tensor_product(1/sqrt(2)*ket®@ + 1/sqrt(2)*ketl)

[1/2]
[1/2]
[---]
[1/2]
[1/2]



ENTANGLED STATES

An n-qubit state |¢) is called entangled if it cannot be decomposed as [¥) = [¢) @ |1)7).

Example

1
N (100) + 1))

ket® = matrix(2, 1, [1,0]); ketl = matrix(2, 1, [0,1])
(1/sqrt(2)) * (ket@.tensor_product(ket®) + ketl.tensor_product(ketl))

[1/2*sqrt(2)]
[ 0]
[ 0]

[1/2*sqrt(2)]



MEASURING n QUBIT STATES

Measuring the state:

) = > Qig..ii_,

i0,yin—1€{0,1}"

measure

e, e ) T, o . e, ) with probability |aj, j |°

Measuring the first register:

leo) [1h0)  with prob. |aql’

[) = ag - |eo) [to) + aq - |€1) |1pr) ———— { lea) [1)  with prob. |a|?

We necessarily have |ao|” + |aa|* =1



QUANTUM COMPUTATION

- A unitary matrix U € C¥'*?", j.e. UT - U = I is called a quantum circuit

- Any classical circuit f on n-bits can be written as a unitary Uf on 2n-qubits

Ur - [¢) [0) = ) If (¥))



MEASURING ENTANGLED REGISTERS

Consider Us - |x, y) = |x, f(x) @) for some f : {0,1}" — {0, 1}.

- Measure the last register |f(x) @ y) to obtain v

- The first register |x) collapses to those x € {0,1}" st. f(X) By = v.

- The first n registers hold a superposition of the preimages of v under f.
- Measurements must stay consistent. Turns out this is quite powerful!



NO-CLONING THEOREM

Proof Sketch:
- There is no linear map C from |¢) ® |0) to
- We can “cut” and “paste” a %) ® [4)-
quantum state, but we cannot * It would need to map ‘XHM ®|0) to
“copy” and “paste”. |x >}2|y> ® IX>}2|y>

' t‘Move i.sb[)o"ssible. Copy is - By linearity, we'd need: C (L\%‘” ® |O>) -
impossible.
’ (%) + ) ®10))
- (C(Ix) ®10)) + C(ly) ® 10)))

(@) +1y) ®1y))
X)+1y) ® [X)+1y)
V2 V2

LRSS



GROVER'S ALGORITHM




PROBLEM STATEMENT

Given some function f : {0,1}" — {0, 1}, we want to find some special element Xp.

- For example, given an plaintext-ciphertext pair (p, c¢) for AES, we might write
f:k— AES(R,p) = c.
- Classically, we'd need to call f about 2" times to find xq

- Grover's algorithm only needs v/2" = 2"/2 queries



EXAMPLE

* N =2 X =10, Uf|X,y>:‘X,f(X)@y>

00,0 00,1 01,0 01,1 10,0 10,1 11,0 11,1
00,0 / 1
00,1 1
01,0 1
U = 0L 1
10,0 1
10,1 1
11,0 1
11,1 1




FIRST ATTEMPT

Let's apply the Hadamard gate on the first n registers, apply Us and measure

|tho) = 10,0)
) = (H" @1) -10,0) = [Zg' >] 0
- er{OJ}" |X> - er{OJ}" |X» f(X)>

Measuring the last qubit will produce 1 with probability 1/2". If that event happens, then
measuring the first n qubits will output the correct answer xq.



TRICK 1: PHASE INVERSION |

Apply the Hadamard gate on the last register and apply Us

[o) = |X, 1)
(1) = (In @ H) - %, 1) = |X) {'Wﬂw _ [x7 0>ﬁ|x,1>}

T =Y [F @0 F e [1Fe0) - F60)
[b2) = s ('X>[ v D”{ 7 }'”[ 7 1

v [l =T ] T | B ifx=x
=(-1) |X>[ /2 }—{ +11%) |o>\}2\1> i X £ X




TRICK 1: PHASE INVERSION I

Applying:

15 1 1
(In ® XH) - Us - (I @ H) - 1;2 210) = (In @ XH) - _1;2 ®|O>\;§1>: _zj 0)
1/2 1/2 1/2

Useless?

(=2 = 12



TRICK 2: INVERSION ABOUT THE MEAN (EXAMPLE)

79

53

42 T

38

23
17

y=p+(p—X)=—X+2pu



TRICK 2: INVERSION ABOUT THE MEAN (EXAMPLE)

53
‘ 46

67

61

79

42 f
| 38
31

y=p+(p—x)

17

=—X+2u

23




TRICK 2: INVERSION ABOUT THE MEAN |

Computing the mean:

Voo 0 L Y 1 VoS
Vo YL Vo Vo S
M= : S : M-v= :
or fr o Tr Ao 1/ Zilo V;

Vo VL Y Mo V- SF v



TRICK 2: INVERSION ABOUT THE MEAN I

Inversion about the mean:

(=1+2/2) 2for e 2for 2/on
2/ (=1+227) ... 2/ 2/
“lam= | AR z
2/ e 2/ (=14 2/2) 2/
2/ . 2/on 2/ (=142
Vo + 2/2n 212 81 Vi
Vﬂ _|_ 2/2n 2 61 V/
(=1+2M)-v= :
Von_»y + 2/2" ° 212:61 Vi

n
Von_ 1-|—2/2" ZI 0 V,



TRICK 2: INVERSION ABOUT THE MEAN IlI

A straight-forward calculation shows that —I + 2 M is indeed unitary an thus a quantum
circuit!



COMBINING THE TWO TRICKS

def phasef(v, 1i):
vV = enumerate(v)
v = [v_ * (-1)**int(i==j) for j,v_ in v]
return vector(v)

phasef(vector(zz, 4, [1,1,1,1]), 2)

(1,1, -1, 1)

def imeanf(v):
N = ZZ(len(v))
M = matrix(QQ, len(v), len(v), [1/N]*N**2)
I = identity_matrix(N)
return (-I + 2*M)*v

imeanf(vector(zz, 5, [53,38,17,23,79]))

(31, 46, 67, 61, 5)



COMBINING THE TWO TRICKS

def phasef(v, 1i): v = vector(RealField(prec=12), 5, [10]*5)

vV = enumerate(v) print(f" input: {v}")

v = [v_ * (-1)**int(i==j) for j,v_ in v] = phasef(v, i=3); print(f"step 1a: {v}")

return vector(v) = imeanf(v); print(f"step 1b: {v}, A: {max(v)-min(v)}")
= phasef(v, i=3); print(f"step 2a: {v}")
= imeanf(v); print(f"step 2b: {v}, A: {max(v)-min(v)}")
= phasef(v, i=3); print(f"step 3a: {v}")
= imeanf(v); print(f"step 3b: {v}, A: {max(v)-min(v)}")

phasef(vector(zz, 4, [1,1,1,1]), 2)

< < < < < <
|

(1,1, -1, 1)

input: (10.0, 10.0, 10.0, 10.0, 10.0)
step 1a: (10.0, 10.0, 10.0, -10.0, 10.0)
step 1b: (2.00, 2.00, 2.00, 22.0, 2.00), A: 20.0
step 2a: (2.00, 2.00, 2.00, -22.0, 2.00)
step 2b: (-7.60, -7.60, -7.60, 16.4, -7.60), A: 24.0
step 3a: (-7.60, -7.60, -7.60, -16.4, -7.60)
step 3b: (-11.1, -11.1, -11.1, -2.33, -11.1), A: 8.80

def imeanf(v):
N = ZZ(len(v))
M = matrix(QQ, len(v), len(v), [1/N]*N**2)
I = identity_matrix(N)
return (-I + 2*M)*v

imeanf(vector(zz, 5, [53,38,17,23,79]))

(31, 46, 67, 61, 5)



COMBINING THE TWO TRICKS

def phasef(v, 1i): v = vector(RealField(prec=12), 5, [10]*5)
vV = enumerate(v) print(f" input: {v}")
= phasef(v, i=3); print(f"step 1a: {v}")
= imeanf(v); print(f"step 1b: {v}, A: {max(v)-min(v)}")
= phasef(v, i=3); print(f"step 2a: {v}")
= imeanf(v); print(f"step 2b: {v}, A: {max(v)-min(v)}")
= phasef(v, i=3); print(f"step 3a: {v}")
= imeanf(v); print(f"step 3b: {v}, A: {max(v)-min(v)}")

v = [v_ * (-1)**int(i==j) for j,v_ in v]
return vector(v)

phasef(vector(zz, 4, [1,1,1,1]), 2)

< < < < < <
|

(1,1, -1, 1)

input: (10.0, 10.0, 10.0, 10.0, 10.0)
step 1a: (10.0, 10.0, 10.0, -10.0, 10.0)
step 1b: (2.00, 2.00, 2.00, 22.0, 2.00), A: 20.0
step 2a: (2.00, 2.00, 2.00, -22.0, 2.00)
step 2b: (-7.60, -7.60, -7.60, 16.4, -7.60), A: 24.0
step 3a: (-7.60, -7.60, -7.60, -16.4, -7.60)
step 3b: (-11.1, -11.1, -11.1, -2.33, -11.1), A: 8.80

def imeanf(v):
N = ZZ(len(v))
M = matrix(QQ, len(v), len(v), [1/N]*N**2)
I = identity_matrix(N)
return (-I + 2*M)*v

imeanf(vector(zz, 5, [53,38,17,23,79]))

The optimal number of repetitions is /dim(v)
(31, 46, 67, 61, 5)



GROVER'S ALGORITHM

1. Start with |0)
2. Apply H®"
3. Repeat v/2" times:

31 Apply phase inversion Us - (1 ® H)
3.2 Apply inversion about the mean —I + 2M

4. Measure the qubits



RECAP: GROVER VS AES

Best known quantum algorithms for attacking symmetric cryptography are based on
Grover's algorithm.

- Search key space of size 2" in 2"/2 operations: AES-256 — 128 “quantum bits of
security”.

- Taking all costs into account: > 2™ classical operations for AES-256."
- Assuming a max depth of 2% for a quantum circuit: overall AES-256 cost is ~ 21%°.

- Does not parallelise: have to wait for 2% steps, cannot buy 232 quantum computers
and wait 2% /2% steps.

'samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing Grover Oracles for Quantum Key Search
on AES and LowMC. In: EUROCRYPT 2020, Part II. ed. by Anne Canteaut and Yuval Ishai. Vol. 12106. LNCS. Springer, Cham, May
2020, pp. 280-310. DOI: 10.1007/978-3-030-45724-2_10.


https://doi.org/10.1007/978-3-030-45724-2_10

SHOR’S ALGORITHM




TASK

Given N =p-q for p,q prime find p or g.



A MAGICAL NEW OPERATION

Consider a function fq n(x) for any 0 < a < N, which computes fy n(X) == a* mod N

Example:

p, g =13, 15 p, =3, 5

N = p*q N = p*q

a=2 A=

def f(x): [list(range(N)), None, [f(i) for i in range(N)]]
return power_mod(a, X, N)

f(13)




A MAGICAL NEW OPERATION

Theorem (Euler’s Theorem) - S0 fan(+) should have some

For any modulus N and any coprime integer a, it period r: fan(X) = fan(x +1).

holds that - We can implement fq n(+)
a®™ =1 mod N efficiently on classical and on

where ¢(n), Euler’s totient function, counts the G COMBUETS

integers up to n relatively prime to n. - On a quantum computer, we
can find this period efficiently

but this assumed hard on
classical computers.

A Magical New Operation

Let P(a, N) be an oracle that outputs r s.it. fan(X) = fan(X +1).



FACTORING WITH THAT MAGICAL NEW OPERATION

1. Pick a random 2 < a < N.

If gcd(a, N) # 1, output a as a factor of N.

Call P(a,N) and retrieve r.

If r is not even, start over.

We have a”" =1 mod N and thus N | (a" —1).

Write a" — 1= (Va" +1) - (Va" —1)2

Sowe get N | (a'/? —=1)-(a'/? +1), i.e. any factor of N is a factor of (a’/? — 1), (a'/? + 1)
or both

71 It can't be that N | a”/? — 1 because the period is r and not r/2
72 It could be that N | a’/? + 1 and then the algorithm fails

8. Compute d := gcd(N,a’/? 4+ 1)

N @ G o @S

K=yt =(x=y) (x+y)



THE MAGICAL NEW OPERATION

1. We can implement fo v(+) as a quantum circuit Uy, ¢y acting on m := [log N°] qubits
2. We can apply Hadamard gates on the inputs before applying Uy, (.,
3. This gives us a state?
o) = er{o_q}m X, fa,n(X)) _ ZXG{OJ}’” X, a* mod N>.
v v
4. The final ingredient is a Quantum Fourier Transform (QFT) which more or less
extracts the period from such a state.*

3I'm identifying the binary representation x of x with x here.
“I have yet to find a simple way of explaining it :(



RECAP: SHOR VS RSA, DH, ...




COMMITMENT SCHEMES




COMMITMENT SCHEMES

Statistically Hiding:

Alice Bob
(Mo, my) « A(k)
r«s{0, 1 k b {0,1} 1
Prib'=b r«s{0,1}* ==
me {0 'I}A S C < comk(mb, r)
’ (commitment) b+ A(c)
comg(m,r)=c
m,r
4 for any A.
(opening)

Computationally Binding: “PPT adversary cannot change its mind after sending c”



COMMITMENT SCHEMES

Statistically Hiding:

Alice Bob
(mo, my) < A(k)
r«s{0, 1 k b {0,1} 1
Prib'=b r«s{0,1}* ==
me {0 'I}A € C comk(mb, r)
’ (commitment) b’ A(c)
comg(m,r)=c
m,r
4 for any A.
(opening)

Computationally Binding: “PPT adversary cannot change its mind after sending c”

How should we formalise this?



CLASSICAL DEFINITION

“PPT adversary cannot change its mind after sending c”

Classical Definition

PPT A cannot find (m,r,m’,r") where m £ m’ and

comg(m, r) = com(m’, r").

In particular, any collision-resistant hash function implies a binding commitment scheme.



INTERLUDE

- A commitment scheme cannot be statistically hiding and statistically binding at the
same time
- If it is statistically hiding this means that for any ¢ = com(m, r) there exists some r’ such
that ¢ = comy(m’, r’) for any m’.
- If it is statistically binding this means that for any ¢ = comy(m, r) there exists no r’ such
that ¢ = comy(m’, r) for any m’ # m.
- Any IND-CPA secure encryption scheme is a hiding commitment scheme

- Any perfectly-correct encryption scheme is a binding commitment scheme, otherwise
decryption might fail



CLASSICAL DEFINITION

“PPT adversary cannot change its mind after sending c”

Classical Definition
PPT A cannot find (m,r,m’,r") where m £ m’ and

comg(m, r) = com(m’, r").

In particular, any collision-resistant hash function implies a binding commitment scheme.

This is not true if A is a quantum adversary.



ATTACK ON CLASSICAL DEFINITION |

There exists a quantum-secure collision-resistant hash function H where A can open
comg(m, r) := H(m,r) to any m.

- Quantum adversary cannot find two pairs (m,r), (m’,r’) that agree on
comg(m,r) = comy(m,r)
- But it can open to some message m even if it learns it after sending c.

The attack depends on an oracle that we do not know how to build. But even with this
oracle collision resistance holds.

SAndris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum Attacks on Classical Proof Systems: The Hardness of
Quantum Rewinding. In: 55th FOCS. IEEE Computer Society Press, Oct. 2014, pp. 474-483. DOI: 10.1109/F0CS.2014.57;
Dominique Unruh. Computationally Binding Quantum Commitments. In: EUROCRYPT 2016, Part II. ed. by Marc Fischlin and
Jean-Sébastien Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016, pp. 497-527. DOI:
10.1007/978-3-662-49896-5_18.


https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1007/978-3-662-49896-5_18

ATTACK ON CLASSICAL DEFINITION Il

1. Prepare a quantum state

16) = [Z{}ﬂ%} m) |r>] o

2. Apply H on the first two registers and add result to the third

B 2myrefoa3r x{o,1p> M) 1) [H(m, 1))
N V22X

3. Measure the third register to obtain some value h

|¢) :

6) = —Zmain=unn M) 10
~ VI(m,n) [h=A(m, 0} |

The first register now contains all preimages of h.

[h)




ATTACK ON CLASSICAL DEFINITION IlI

4. Use the magic oracle® to filter {(m, r)| h=H(m, r)} to

{(m, r)| h=H(m, r)/\m_mo}

for any chosen m.

5. Measure the first register to obtain (mg, r) and submit as an opening.

Collision Resistance

This does not violate collision resistance because we are “using up” our state, i.e. we
can only measure once, still.

5This is a variant of Grover's algorithm but we don’t know how to implement the required steps.



CORRECTED DEFINITION: FORMALISING THE ATTACKER

Can write down our attacker like this:

Alice Bob
R

S,M,R ,

IS, M, R) (commitment)

IS, M, R)

measure |S, M, R) m, r

obtain m,r Y

(opening)



CORRECTED DEFINITION: WHAT DOES IDEAL LOOK LIKE?

Collapse-binding Commitment Dominique Unruh.
Computationally Binding
Quantum Commitments. In:
EUROCRYPT 2016, Part Il. ed. by
Marc Fischlin and
Jean-Sébastien Coron.

1: b<+s${0,1}; kR s {0,1}*

2: ¢, |S,M,R) + A(R)

3: compute |S,M,R,Vc(M,R)) /| Vc(M,R) = 1iff comy(M,R) = ¢
4: measure [V¢(M,R)) =v

5: /| measurement has no effect if [M) = |m), i.e. “collapsed” Vol. 9666. LNCS. Springer,
6: ifv=1Ab=0 then measure |[M) Berlin, Heidelberg, May 2016,
71 b+ A(|S,M,R,Vc(M,R))) pp. 497-527. DOI: 10.1007/978-

8: returnb =10’ 3-662-49896-5_18


https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-662-49896-5_18

COLLAPSING HASH FUNCTIONS

Collapsing Hash Function H

15

b <+ {0,1}
[1h)o = IS) 22« 1%, 0) <= A(H)
1), = 1S) 2o« IX, H(X))
if b = 0 then

measure |X) € [¥), = [¢¥),
else

measure |H(X)) € [¢), — |¥),
b+ A (W))z)
return b = b’

Figure 1: Collapsing Hash Function

Game indeed differs:
- b = 0: collapses to a single input-output pair
- b =1: collapses to all preimages of
measured value H(x)

[Unr16]: This implies collapse-binding
commitments.



A NEW CLASSICAL DEFINITION

Any somewhere statistically binding hash function is collapsing.



SOMEWHERE STATISTICALLY BINDING (SSB)

- Consider H(Xo | X1 | -+ | X¢—1)
- There are “modes” H()(x, | x;) that are statistically binding to block x;
- We also have “index hiding”: H ~. H") ~. HU) for any i,].

- Since H() is compressing it it cannot be statistically binding to its input
- But it can be be statistically binding for one small block
- If cannot tell which block it is statistically binding to, have an SSB hash function

- Can build this from a perfectly correct fully-homomorphic encryption scheme



FIN

IF YOU TAKE NOTHING ELSE FROM THIS LECTURE: QUANTUM
COMPUTERS WON'T SOLVE HARD PROBLEMS INSTANTLY BY JUST
TRYING ALL SOLUTIONS IN PARALLEL.

CREDIT:


https://scottaaronson.blog/
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\begin{document}

\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}

\begin{frame}[label={sec:org28eef2b}]{Programme}
Teach you just enough quantum computing to get a sense of how it affects cryptography.
\end{frame}
\begin{frame}[label={sec:orga76b82f}]{References}
\begin{itemize}
\item Thomas Debris-Alazard. \emph{Lecture 1: Introduction to Quantum Computing.} INF587 Quantum computer science and applications \url{https://tdalazard.io/S1.pdf}
\item \fullcite{YanMan08}, esp. Chapters 1, 2, 3 and 6
\item Fermi Ma's talk \href{https://www.youtube.com/watch?v=\_y-LLJIGK50}{Quantum Secure Commitments and Collapsing Hash Functions} delivered as part of the \emph{Quantum Cryptography for Dummies} reading group at the \emph{Lattices: Algorithms, Complexity, and Cryptography} special semester at the Simons Institute, 2020
\end{itemize}
\end{frame}
\section{Qubits}
\label{sec:org7d6f076}
\begin{frame}[label={sec:org14f7f8f}]{Classical Bit}
\begin{center}
\(b \in \bin\)
\end{center}
\end{frame}
\begin{frame}[label={sec:orgb413e74}]{Probabilistic Bit}
\begin{itemize}
\item Probabilistic bit: \(\avec{p}{q}\) where \(p \coloneqq \Pr(b=0)\) and \(q \coloneqq  \Pr(b=1)\)
\item Computing on probabilistic bits
\[
\avec{p}{q} \rightarrow \avec{p'}{q'}
=
\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)
\cdot
\avec{p}{q}
\text { where }
\left\{\begin{array}{l}a+c=1 \\ b+d=1\end{array} \text{ and } a, b, c, d \geq 0\right.
\]
\end{itemize}
\begin{columns}[t]
\begin{column}{0.5\columnwidth}
\begin{alertblock}{\textbf{Example: \(b \rightarrow b \oplus b\)}}
\[
\avec{p}{q}
\rightarrow
\avec{1}{0}
=
\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) \cdot
\avec{p}{q}
\]
\end{alertblock}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{alertblock}{\textbf{Example: \(b \rightarrow b \oplus 1\)}}
\[
\avec{p}{q}
\rightarrow
\avec{q}{p}
=
\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right) \cdot
\avec{p}{q}
\]
\end{alertblock}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org497a5bb}]{Complex Numbers}
\begin{columns}
\begin{column}{0.6\columnwidth}
\centering
\begin{tikzpicture}[scale=2.0]
    \draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
    \draw[->] (-1.5,0) -- (1.5,0) coordinate (x axis)node[right]{\(Re\)};
    \draw[->] (0,-1.5) -- (0,1.5) coordinate (y axis)node[above]{\(Im\)};
    \draw (0,0) circle [radius=1cm];
    \draw[very thick,mLightBrown] (30:1cm) -- node[left=1pt] {\(y\)} (30:1cm |- x axis);
    \draw[very thick,mLightGreen] (30:1cm |- x axis) -- node[below=2pt] {\(x\)} (0,0);
    \path [name path=upward line] (1,0) -- (1,1);
    \path [name path=sloped line] (0,0) -- (30:1.5cm);
    \draw (0,0) -- (30:1cm);
    \foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
    \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\(\xtext\)};
    \foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
    \draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\(\ytext\)};
\end{tikzpicture}
\end{column}
\begin{column}{0.4\columnwidth}
\begin{itemize}
\item \(i \coloneqq \sqrt{-1}\)
\item \(z \coloneqq  x + i\,y\)
\item \(Re(z) \coloneqq x\)
\item \(Im(z) \coloneqq y\)
\item \(\vert z\vert = \sqrt{x^{2} + y^2}\)
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgf1342a3}]{Quantum Bit (Qubit): ``Probabilistic Bits with Complex Probabilities''}
\begin{itemize}
\item \alert{A qubit} \(\ket{\psi}\) is an element of \(\CC^{2}\) with Euclidean norm 1:
\[\ket{\psi}= \alpha \cdot \ket{0} + \beta \cdot \ket{1} \text{ with } \alpha, \beta \in \CC \text { (called amplitude) and } |\alpha|^{2}+|\beta|^{2}=1\]
\item \(\ket{0}, \ket{1}\) is an orthonormal basis of \(\CC^{2}\). Usually defined as
\[\ket{0} \coloneqq \avec{1}{0} \text{ and } \ket{1} \coloneqq \avec{0}{1} \text{ which then implies }  \alpha \cdot \ket{0} + \beta \cdot \ket{1} = \avec{\alpha}{\beta}.\]
\item We call this a \alert{superposition} of \(\ket{0}\) and \(\ket{1}\).
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orga1c0105}]{Measurements}
We cannot ``see'' qubits, we can only measure in their classical states.

\alert{Measurement}: probabilistic orthogonal projection. Given \(\ket{0}, \ket{1} \in \CC^{2}\):
\[\ket{\psi}=\alpha\cdot\ket{0} + \beta\cdot\ket{1}
  \xrightarrow{\text{ measure }}
  \left\{\begin{array}{ll}
  \ket{0} & \text { with probability } {|\alpha|}^{2} \\
  \ket{1} & \text { with probability } {|\beta|}^{2}
  \end{array}\right.\]
\end{frame}
\begin{frame}[label={sec:orgc945ad5}]{Computation}
\begin{itemize}
\item A \alert{unitary matrix in \(\CC^{2 \times 2}\)} is any matrix such that \(\mat{U} \cdot \mat{U}^{\dagger} = \mat{U}^{\dagger} \cdot \mat{U} = \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}\) where \(\mat{U}^{\dagger}\) is the conjugate transpose of \(\mat{U}\):
\[\mat{U} = \begin{pmatrix} u_{00} + v_{00} \cdot i & u_{01} + v_{01} \cdot i \\ u_{10} + v_{10} \cdot i & u_{11} + v_{11} \cdot i\end{pmatrix}, \quad \mat{U}^{\dagger} \coloneqq \begin{pmatrix} u_{00} - v_{00} \cdot i & u_{10} - v_{10} \cdot i \\  u_{01} - v_{01} \cdot i & u_{11} - v_{11} \cdot i\end{pmatrix}\]
\item \alert{Computation:} \(\ket{\psi} \rightarrow \mat{U} \cdot \ket{\psi}\)
\begin{itemize}
\item All quantum computations are reversible:
\[\ket{\psi} \xrightarrow{\mat{U}} \mat{U} \cdot \ket{\psi} \xrightarrow{\mat{U}^\dagger} \mat{U}^{\dagger} \cdot \mat{U} \cdot \ket{\psi} = \ket{\psi}\]
\end{itemize}
\item We call \(\mat{U}\) \alert{quantum gates}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org9360249}]{Quantum Computers …}
\begin{columns}
\begin{column}{0.6\columnwidth}
\begin{center}
… are linear-algebra machines.
\end{center}
\end{column}
\begin{column}{0.4\columnwidth}
\pause

\emph{Mathematics is the art of reducing any problem to linear algebra.}\\
\flushright{--- William Stein}

\begin{center}
\includegraphics[keepaspectratio,width=1.0\columnwidth]{./lecture-quantum-william-stein.jpg}
\end{center}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org60012dc}]{Examples of Quantum Gates}
\begin{alertblock}{Example NOT-gate \(b \rightarrow ``b \oplus 1''\)}
\[\ket{\psi} = \alpha \ket{0} + \beta \cdot \ket{1} = \avec{\alpha{}}{\beta}
\longrightarrow
\avec{\beta}{\alpha}
=
\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cdot
\ket{\psi}
\]

\pause
\end{alertblock}
\begin{alertblock}{Example \(b \rightarrow b \oplus b\)}
Computation is not reversible!
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org505d028}]{Hadamard-gate \(\mat{H}\) I}
\[\mat{H} \cdot \ket{\psi} = \mat{H} \cdot (\alpha \ket{0} + \beta \cdot \ket{1})
= \mat{H} \cdot \avec{\alpha}{\beta}
= \frac{1}{\sqrt{2}} \cdot \left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right) \cdot \avec{\alpha}{\beta} 
= \frac{1}{\sqrt{2}} \cdot \avec{\alpha + \beta}{\alpha - \beta}\]

\pause

\begin{itemize}
\item \(\mat{H} \cdot \ket{0} = \frac{1}{\sqrt{2}} \cdot \left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right) \cdot  \avec{1}{0} = \frac{1}{\sqrt{2}} \cdot \avec{1 + 0}{1 - 0} = \avec{1/\sqrt{2}}{1/\sqrt{2}}\)
\begin{itemize}
\item measure \(\ket{0}\) or \(\ket{1}\) with probability 1/2!
\end{itemize}
\pause
\item \(\mat{H} \cdot  \avec{1/\sqrt{2}}{1/\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \avec{1/\sqrt{2} + 1/\sqrt{2}}{1/\sqrt{2} - 1/\sqrt{2}} = \avec{1}{0} = \ket{0}\)
\begin{itemize}
\item and we're back!
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org49b90b9}]{Hadamard-gate \(\mat{H}\) II}
The outputs of the Hadamard gate applied to \(\ket{0}\) and \(\ket{1}\) are so important we give them names:
\begin{align*}
\ket{+} & \coloneqq \frac{1}{\sqrt{2}} \cdot \bigg(\ket{0} + \ket{1}\bigg) = \frac{1}{\sqrt{2}} \cdot \avec{1}{1}\\
\ket{-} & \coloneqq \frac{1}{\sqrt{2}} \cdot \bigg(\ket{0} - \ket{1}\bigg) = \frac{1}{\sqrt{2}} \cdot \avec{1}{-1}
\end{align*}

We cannot achieve the Hardmard gate with probabilistic bits \(\Rightarrow\) quantum advantage
\end{frame}
\section{Many Qubits}
\label{sec:org40235a3}
\begin{frame}[label={sec:orgded8cd8}]{Tensor Products}
Let \(\vec{v} \in \CC^{n}\) and \(\vec{w} \in \CC^{m}\), their tensor product is \(\vec{v} \otimes \vec{w} \coloneqq (v_{0} \cdot \vec{w}, \ldots, v_{n-1} \cdot \vec{w})\)
\begin{itemize}
\item This is the same as the rows of:
\[
\left(\begin{array}{c}v_{0} \\  v_{1} \\ \vdots \\ v_{n-1}\end{array}\right)
 \cdot
\left(\begin{array}{llll} w_{0} & w_{1} & \cdots & w_{m-1}\end{array}\right)
= 
\begin{pmatrix}
  v_{0} \cdot w_{0} & v_{0} \cdot w_{1} & \cdots & v_{0} \cdot w_{m-1}\\
  v_{1} \cdot w_{0} & v_{1} \cdot w_{1} & \cdots & v_{1} \cdot w_{m-1}\\
  \vdots & \vdots & \ddots & \vdots\\
  v_{n-1} \cdot w_{0} & v_{n-1} \cdot w_{1} & \cdots & v_{n-1} \cdot w_{m-1}\\
  \end{pmatrix}
\]
\end{itemize}

\pause

\begin{itemize}
\item For any scalar \(z\), we have \(z\cdot (\vec{v} \otimes \vec{w})=(z \cdot \vec{v}) \otimes \vec{w} = \vec{v} \otimes (z \cdot \vec{w})\)
\item For any \(\vec{v}_{0}, \vec{v}_{1} \in \CC^{n}\), we have \((\vec{v}_{0} + \vec{v}_{1}) \otimes \vec{w} = \vec{v}_{0} \otimes  \vec{w} + \vec{v}_{1} \otimes \vec{w}\)
\item For any \(\vec{w}_{0}, \vec{w}_{1} \in \CC^{m}\), we have \(\vec{v} \otimes (\vec{w}_{0} + \vec{w}_{1}) = \vec{v} \otimes \vec{w}_{0} + \vec{v} \otimes \vec{w}_{1}\)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org0da73af}]{Tensor Products of Spaces}
Consider
\begin{itemize}
\item \(\CC^{n} = \mathsf{Span}_{\CC}(\vec{v}_0, \ldots \vec{v}_{n-1})\) where e.g. \(\vec{v}_{0} \coloneqq (1, 0 \ldots, 0)\) etc, or some other basis of \(\CC^{n}\)
\item \(\CC^{m} = \mathsf{Span}_{\CC}(\vec{w}_0, \ldots \vec{w}_{m-1})\) where e.g. \(\vec{w}_{0} \coloneqq (1, 0 \ldots, 0)\) etc, or some other basis of \(\CC^{m}\)
\end{itemize}

We have:
\begin{itemize}
\item \(\CC^{n} \otimes \CC^{m} \coloneqq \mathsf{Span}_{\CC}(\vec{v}_{i} \otimes \vec{w}_{j} : 0 \leq i < n; 0 \leq j < m)\)
\item \(\CC^{n} \otimes \CC^{m}\) has dimension \(n \times m\)
\item \(\vec{x} \in \CC^{n} \otimes \CC^{m} \Longleftrightarrow \exists\, \alpha_{i, j}: \sum_{0 \le i < n, 0 \le j < m} \alpha_{i,j} \cdot \vec{v}_{i} \otimes \vec{w}_{j}\)
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgec3619f}]{Tensor Products of Matrices}
\begin{align*}
\mat{A} \coloneqq
\begin{pmatrix}
a_{0,0} & \ldots & a_{0,n-1}\\
\vdots & \ddots & \vdots\\
a_{m-1,0} & \ldots & a_{m-1,n-1}\\
\end{pmatrix}, \quad
\mat{B} \coloneqq
\begin{pmatrix}
b_{0,0} & \ldots & b_{0,q-1}\\
\vdots & \ddots & \vdots\\
b_{p-1,0} & \ldots & b_{p-1,q-1}\\
\end{pmatrix}\\
\mat{A} \otimes \mat{B} \coloneqq
\begin{pmatrix}
 a_{0,0} \cdot \mat{B} & \cdots &  a_{0, m-1} \cdot \mat{B} \\
 \vdots & \ddots & \vdots \\
  a_{n-1, 0} \cdot \mat{B} & \cdots & a_{n-1, m-1} \cdot \mat{B}\\
\end{pmatrix}  
\in \CC^{m p \times n q}  
\end{align*}
\end{frame}
\begin{frame}[label={sec:orga7a26c9}]{Examples}
\begin{enumerate}
\item \(\left(\begin{array}{l}1 \\ 2\end{array}\right) \otimes\left(\begin{array}{l}2 \\ 3\end{array}\right)=\left(\begin{array}{l}1 \cdot 2 \\ 1 \cdot 3 \\ 2 \cdot 2 \\ 2 \cdot 3\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 4 \\ 6\end{array}\right)\)

\item \(\mat{X} \otimes \mat{H} = \left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes \frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0\end{array}\right)\)
\end{enumerate}
\end{frame}
\begin{frame}[label={sec:org4ebe25b},fragile]{\(n\) Qubit States}
 \begin{columns}[t]
\begin{column}{0.6\columnwidth}
\begin{itemize}
\item Recall that a qubit \(\ket{\psi}\) is an element in \(\CC^{2}\) with norm 1.
\item A \alert{register of \(n\) qubits} \(\ket{\psi}\) is an element in \(\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n \text { times }}=\mathbb{C}^{2^{n}}\).
\item Let \(\ket{0}, \ket{1}\) be an orthonormal basis of \(\CC^{2}\), then
\[\left(\ket{b_{0}} \otimes \ket{b_{1}} \otimes \cdots \otimes \ket{b_{n-1}}: b_{0}, \ldots, b_{n-1} \in \bin\right)\]
is an orthonormal basis of \(\underbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}_{n \text { times }}=\mathbb{C}^{2^{n}}\).
\end{itemize}
\end{column}
\begin{column}{0.4\columnwidth}
\begin{lstlisting}[language=Python,numbers=none]
ket0 = matrix(2, 1, [1,0])
ket1 = matrix(2, 1, [0,1])
ket0.tensor_product(ket0), \
ket0.tensor_product(ket1), \
ket1.tensor_product(ket0), \
ket1.tensor_product(ket1)
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
(
[1]  [0]  [0]  [0]
[0]  [1]  [0]  [0]
[-]  [-]  [-]  [-]
[0]  [0]  [1]  [0]
[0], [0], [0], [1]
)
\end{verbatim}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgc2dabaa}]{Notation}
\begin{itemize}
\item For \(b_{0}, \ldots, b_{n-1} \in \bin\) we write
\[\ket{b_0\, b_1\, \ldots\, b_{n-1}} \coloneqq \ket{b_0} \otimes \ket{b_1} \otimes \ldots \otimes \ket{b_{n-1}}\]
\item For \(\ket{\psi_0}, \ket{\psi_1}, \ldots, \ket{\psi_{n-1}} \in \CC^{2}\), we write
\[\ket{\psi_0} \ket{\psi_1} \ldots \ket{\psi_{n-1}} \coloneqq \ket{\psi_0} \otimes \ket{\psi_1} \otimes \ldots \otimes \ket{\psi_{n-1}}\]
\item Any \(\ket{\psi} \in \CC^{2^n}\) of \(n\) qubits can be written as
\[|\psi\rangle=\sum_{\vec{x} \in\bin^{n}} \alpha_{\vec{x}}|\vec{x}\rangle \quad \text { where } \alpha_{\vec{x}} \in \mathbb{C} \text { (called amplitude) and } \sum_{\vec{x} \in \bin^{n}}\left|\alpha_{\vec{x}}\right|^{2}=1\]
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org9622c21},fragile]{Separable States}
 \begin{alertblock}{Definition}
An \(n\)-qubit state \(\ket{\psi}\) is called \alert{separable} if it can be decomposed as \(\ket{\psi} = \ket{\psi_0} \otimes \ket{\psi_1}\). 
\end{alertblock}
\begin{block}{Examples}
\begin{itemize}
\item \(\ket{00} = \ket{0} \otimes \ket{0}\)
\item \(\frac{1}{2} \cdot \left(\ket{00} + \ket{01} + \ket{10} + \ket{11}\right) = \frac{1}{\sqrt{2}} \left(\ket{0} + \ket{1}\right) \otimes \frac{1}{\sqrt{2}} \left(\ket{0} + \ket{1}\right)\)
\end{itemize}
\end{block}
\begin{lstlisting}[language=Python,numbers=none]
ket0 = matrix(2, 1, [1,0]); ket1 = matrix(2, 1, [0,1])
(1/sqrt(2)*ket0 + 1/sqrt(2)*ket1).tensor_product(1/sqrt(2)*ket0 + 1/sqrt(2)*ket1)
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
[1/2]
[1/2]
[---]
[1/2]
[1/2]
\end{verbatim}
\end{frame}
\begin{frame}[label={sec:orge79f96d},fragile]{Entangled States}
 \begin{alertblock}{Definition}
An \(n\)-qubit state \(\ket{\psi}\) is called \alert{entangled} if it cannot be decomposed as \(\ket{\psi} = \ket{\psi_0} \otimes \ket{\psi_1}\).
\end{alertblock}
\begin{block}{Example}
\[\frac{1}{\sqrt{2}} \cdot \left(\ket{00} + \ket{11}\right)\]
\end{block}
\begin{lstlisting}[language=Python,numbers=none]
ket0 = matrix(2, 1, [1,0]); ket1 = matrix(2, 1, [0,1])
(1/sqrt(2)) * (ket0.tensor_product(ket0) + ket1.tensor_product(ket1))
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
[1/2*sqrt(2)]
[          0]
[          0]
[1/2*sqrt(2)]
\end{verbatim}
\end{frame}
\begin{frame}[label={sec:org98cc412}]{Measuring \(n\) Qubit States}
\alert{Measuring the state}:
\[|\psi\rangle=\sum_{i_{0}, \ldots, i_{n-1} \in\{0,1\}^{n}}
\alpha_{i_{0} \ldots i_{-n}}
\left|e_{i_{0}} \cdots e_{i_{n-1}}\right\rangle \xrightarrow{\text{ measure }}\left|e_{j_{0}} \ldots e_{j_{n-1}}\right\rangle \text { with probability }\left|\alpha_{j_{0} \ldots j_{n-1}}\right|^{2}\]

\alert{Measuring the first register}:
\[
|\psi\rangle = \alpha_{0}\cdot \left|e_{0} \right\rangle \left|\psi_{0}\right\rangle
+ \alpha_{1}\cdot \left|e_{1}\right\rangle \left|\psi_{1}\right\rangle
\xrightarrow{\text { measure }}
\left\{\begin{array}{ll}
\left|e_{0}\right\rangle\left|\psi_{0}\right\rangle &\text{with prob. }\left|\alpha_{0}\right|^{2} \\ \left|e_{1}\right\rangle\left|\psi_{1}\right\rangle &\text{with prob. }\left|\alpha_{1}\right|^{2}
\end{array}\right.
\]
We necessarily have \({|\alpha_{0}|}^{2} + {|\alpha_{1}|}^{2} = 1\)
\end{frame}
\begin{frame}[label={sec:orgf1bf24b}]{Quantum Computation}
\begin{itemize}
\item A unitary matrix \(\mat{U} \in \CC^{2^n \times 2^n}\), i.e. \(\vec{U}^{\dagger} \cdot \mat{U} = \mat{I}_{2^n}\) is called a \alert{quantum circuit}
\item Any classical circuit \(f\) on \(n\)-bits can be written as a unitary \(\mat{U}_{f}\) on \(2n\)-qubits
\[\mat{U}_{f} \cdot \ket{\psi} \ket{0} = \ket{\psi} \ket{f(\psi)}\]
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org1f6cdb8}]{Measuring Entangled Registers}
Consider \(\mat{U}_{f} \cdot \ket{\vec{x},\, y} = \ket{\vec{x},\, f(\vec{x}) \oplus y}\) for some \(f: \bin^{n} \rightarrow \bin\).
\begin{itemize}
\item Measure the last register \(\ket{f(\vec{x}) \oplus y}\) to obtain \(v\)
\item The first register \(\ket{\vec{x}}\) \alert{collapses} to those \(\vec{x} \in \bin^{n}\) s.t. \(f(\vec{x}) \oplus y = v\).
\item The first \(n\) registers hold a superposition of the preimages of \(v\) under \(f\).
\item Measurements must stay consistent. Turns out this is quite powerful!
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org6d4485e}]{No-Cloning Theorem}
\begin{columns}
\begin{column}[t]{0.4\columnwidth}
\begin{alertblock}{Cannot copy a quantum state}
\begin{itemize}
\item We can “cut” and “paste” a quantum state, but we cannot “copy” and “paste”.
\item “Move is possible. Copy is impossible.”
\end{itemize}
\end{alertblock}
\end{column}
\begin{column}[t]{0.6\columnwidth}
\textbf{Proof Sketch:}

\begin{itemize}
\item There is no linear map \(C\) from \(\ket{\psi} \otimes \ket{0}\) to \(\ket{\psi} \otimes \ket{\psi}\).
\item It would need to map \(\frac{\ket{x} + \ket{y}}{\sqrt{2}} \otimes \ket{0}\) to \(\frac{\ket{x} + \ket{y}}{\sqrt{2}} \otimes \frac{\ket{x} + \ket{y}}{\sqrt{2}}\)
\item By linearity, we'd need: \(C\left(\frac{\ket{x} + \ket{y}}{\sqrt{2}} \otimes \ket{0}\right) =\)
\begin{itemize}
\item \(\frac{1}{\sqrt{2}}\cdot C((\ket{x} + \ket{y}) \otimes \ket{0})\)
\item \(\frac{1}{\sqrt{2}}\cdot \left(C(\ket{x} \otimes \ket{0}) + C(\ket{y} \otimes \ket{0})\right)\)
\item \(\frac{1}{\sqrt{2}}\cdot \left(\ket{x} \otimes \ket{x} + \ket{y} \otimes \ket{y}\right)\)
\item \(\ne \frac{\ket{x} + \ket{y}}{\sqrt{2}} \otimes \frac{\ket{x} + \ket{y}}{\sqrt{2}}\)
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\section{Grover's Algorithm}
\label{sec:org70ddfdb}

\begin{frame}[label={sec:org3d1160c}]{Problem Statement}
Given some function \(f: \bin^{n} \rightarrow \bin\), we want to find some special element \(x_{0}\).
\begin{itemize}
\item For example, given an plaintext-ciphertext pair \((p,c)\) for AES, we might write \(f: k \rightarrow  AES(k, p) \overset{?}{=} c\).
\item Classically, we'd need to call \(f\) about \(2^{n}\) times to find \(x_{0}\)
\item Grover's algorithm only needs \(\sqrt{2^n} = 2^{n/2}\) queries
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orga6843c4}]{Example}
\begin{itemize}
\item \(n=2\); \(x_{0} = 10\); \(\mat{U}_{f} \cdot \ket{\vec{x},\, y} = \ket{\vec{x},\, f(\vec{x}) \oplus y}\)
\end{itemize}
\begin{align*}
\mat{U}_{f} \coloneqq  \begin{blockarray}{c cccc cccc}
& 00,0 & 00,1 & 01,0 & 01,1 & 10,0 & 10,1 & 11,0 & 11,1\\
\begin{block}{c(cccccccc)}
00,0&1 \\
00,1& &1\\
01,0& & &1\\
01,1& & & &1\\
10,0& & & & & & 1\\
10,1& & & & & 1\\
11,0& & & & & & & 1\\
11,1& & & & & & & & 1\\
\end{block}
\end{blockarray}
\end{align*}
\end{frame}
\begin{frame}[label={sec:org7c8f11e}]{First Attempt}
Let's apply the Hadamard gate on the first \(n\) registers, apply \(\mat{U}_{f}\) and measure

\begin{align*}
\ket{\psi_{0}} &= \ket{\vec{0}, 0}\\
\ket{\psi_{1}} &= \left(\mat{H}^{\otimes n} \otimes \mat{I}\right) \cdot \ket{\vec{0}, 0} = \left[\frac{\sum_{\vec{x} \in \bin^n} \ket{\vec{x}}}{\sqrt{2^n}}\right] \ket{0}\\
\ket{\psi_{2}} &= \mat{U}_{f} \cdot \left[\frac{\sum_{\vec{x} \in \bin^n} \ket{\vec{x}}}{\sqrt{2^n}}\right] \ket{0} = \frac{\sum_{\vec{x} \in \bin^n} \ket{\vec{x},\ f(\vec{x})}}{\sqrt{2^n}}
\end{align*}

Measuring the last qubit will produce \(1\) with probability \(1/2^{n}\). \alert{If that event happens, then measuring the first \(n\) qubits will output the correct answer \(x_{0}\).}
\end{frame}
\begin{frame}[allowframebreaks]{Trick 1: Phase Inversion}
Apply the Hadamard gate on the \alert{last} register and apply \(\mat{U}_{f}\) 

\begin{align*}
\ket{\psi_{0}} &= \ket{\vec{x}, 1}\\
\ket{\psi_{1}} &= \left(\mat{I}_{n} \otimes \mat{H} \right) \cdot \ket{\vec{x}, 1} = \ket{\vec{x}} \left[\frac{\ket{0} - \ket{1}}{\sqrt{2}}\right] = \left[\frac{\ket{\vec{x},0} - \ket{\vec{x},1}}{\sqrt{2}}\right]\\
\ket{\psi_{2}} &= \mat{U}_{f} \cdot \left(\ket{\vec{x}} \left[\frac{\ket{0} - \ket{1}}{\sqrt{2}}\right]\right) = \ket{\vec{x}} \left[\frac{\ket{f(\vec{x}) \oplus 0} - \ket{f(\vec{x}) \oplus 1}}{\sqrt{2}}\right] =  \ket{\vec{x}}
\left[\frac{\ket{f(\vec{x})} - \ket{\overline{f(\vec{x})}}}{\sqrt{2}}\right]\\
 & = (-1)^{f(\vec{x})} \cdot \ket{\vec{x}} \left[\frac{\ket{0}-\ket{1}}{\sqrt{2}}\right]
=\left\{\begin{array}{ll}
-1\ket{\vec{x}} \left[\frac{\ket{0}-\ket{1}}{\sqrt{2}}\right],
& \text { if } \vec{x}=\vec{x}_{\vec{0}} \\ +1\ket{\vec{x}}\left[\frac{\ket{0}-\ket{1}}{\sqrt{2}}\right],
& \text { if } \vec{x} \neq \vec{x}_{\vec{0}}
\end{array}\right.
\end{align*}

\framebreak

\textbf{Applying:}

\begin{align*}
(\mat{I}_{n} \otimes \mat{X}\, \mat{H}) \cdot \mat{U}_{f} \cdot (\mat{I}_{n} \otimes \mat{H}) \cdot
\left(\begin{array}{r}
\nicefrac{1}{2}\\
\nicefrac{1}{2}\\
\nicefrac{1}{2}\\
\nicefrac{1}{2}
\end{array}\right) \otimes \ket{0}
=
(\mat{I}_{n} \otimes \mat{X}\, \mat{H}) \cdot \left(\begin{array}{r}
\nicefrac{1}{2}\\
\nicefrac{1}{2}\\
-\nicefrac{1}{2}\\
\nicefrac{1}{2}
\end{array}
\right) \otimes \frac{\ket{0}-\ket{1}}{\sqrt{2}}
= \left(\begin{array}{r}
\nicefrac{1}{2}\\
\nicefrac{1}{2}\\
-\nicefrac{1}{2}\\
\nicefrac{1}{2}
\end{array}
\right) \otimes \ket{0}
\end{align*}
\begin{alertblock}{Useless?}
\[\lvert(-\nicefrac{1}{2})\rvert^{2} = \lvert\nicefrac{1}{2}\rvert^2\]
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org7300b21}]{Trick 2: Inversion about the mean (Example)}
\begin{center}
\begin{tikzpicture}[xscale=1,yscale=0.05]
\draw[thick] (0,42) -- (10, 42); \node at (-1, 42) {42};
\draw (1, 42) -- (1, 53); \node at (1,57) {53};
\draw (3, 42) -- (3, 38); \node at (3,34) {38};
\draw (5, 42) -- (5, 17); \node at (5,13) {17};
\draw (7, 42) -- (7, 23); \node at (7,19) {23};
\draw (9, 42) -- (9, 79); \node at (9,83) {79};
\phantom{\draw[very thick,mLightBrown] (9, 42) -- (9, 5);  \node at (9,1) {5};}
\only<2>{
\draw[very thick,mLightBrown] (1, 42) -- (1, 31); \node at (1,27) {31};
\draw[very thick,mLightBrown] (3, 42) -- (3, 46); \node at (3,50) {46};
\draw[very thick,mLightBrown] (5, 42) -- (5, 67); \node at (5,71) {67};
\draw[very thick,mLightBrown] (7, 42) -- (7, 61); \node at (7,65) {61};
\draw[very thick,mLightBrown] (9, 42) -- (9, 5);  \node at (9,1) {5};
}
\end{tikzpicture}
\[y = \mu + (\mu - x) = -x + 2\mu\]
\end{center}
\end{frame}
\begin{frame}[allowframebreaks]{Trick 2: Inversion about the mean}
\textbf{Computing the mean:}

\begin{align*}
\mat{M} &=
\begin{pmatrix}
\nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}} & \ldots & \nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}}\\
\nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}} & \ldots & \nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}}\\
\vdots & \vdots & \ddots & \vdots& \vdots\\
\nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}} & \ldots & \nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}}\\
\nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}} & \ldots & \nicefrac{1}{2^{n}} & \nicefrac{1}{2^{n}}\\
\end{pmatrix} & 
\mat{M} \cdot \vec{v} &= \left(\begin{array}{r}
\nicefrac{1}{2^{n}} \cdot \sum_{i=0}^{2^n} v_{i}\\
\nicefrac{1}{2^{n}} \cdot \sum_{i=0}^{2^n} v_{i}\\
\vdots\\
\nicefrac{1}{2^{n}} \cdot \sum_{i=0}^{2^n} v_{i}\\
\nicefrac{1}{2^{n}} \cdot \sum_{i=0}^{2^n} v_{i}\\
\end{array}\right)
\end{align*}

\framebreak

\textbf{Inversion about the mean:}

\begin{align*}
-\mat{I} + 2\, \mat{M} &=
\begin{pmatrix}
(-1 + \nicefrac{2}{2^{n}}) & \nicefrac{2}{2^{n}} & \ldots & \nicefrac{2}{2^{n}} & \nicefrac{2}{2^{n}}\\
\nicefrac{2}{2^{n}} & (-1 + \nicefrac{2}{2^{n}}) &  \ldots & \nicefrac{2}{2^{n}} & \nicefrac{2}{2^{n}}\\
\vdots & \vdots & \ddots & \vdots& \vdots\\
\nicefrac{2}{2^{n}} & \ldots & \nicefrac{2}{2^{n}} & (-1 + \nicefrac{2}{2^{n}}) & \nicefrac{2}{2^{n}}\\
\nicefrac{2}{2^{n}} & \ldots & \nicefrac{2}{2^{n}} & \nicefrac{2}{2^{n}} & (-1 + \nicefrac{2}{2^{n}})\\
\end{pmatrix}\\
\left(-\mat{I} + 2\, \mat{M}\right) \cdot \vec{v} &= \left(\begin{array}{c}
v_{0} + \nicefrac{2}{2^{n}} \cdot \sum_{i=0}^{2^n-1} v_{i}\\
v_{1} + \nicefrac{2}{2^{n}} \cdot \sum_{i=0}^{2^n-1} v_{i}\\
\vdots\\
v_{2^n-2} + \nicefrac{2}{2^{n}} \cdot \sum_{i=0}^{2^n-1} v_{i}\\
v_{2^n-1} + \nicefrac{2}{2^{n}} \cdot \sum_{i=0}^{2^n-1} v_{i}\\
\end{array}\right)
\end{align*}

\framebreak

A straight-forward calculation shows that \(-\mat{I} + 2\, \mat{M}\) is indeed unitary an thus a quantum circuit!
\end{frame}
\begin{frame}[label={sec:orga1ac269},fragile]{Combining the two tricks}
 \begin{columns}[t]
\begin{column}{0.45\columnwidth}
\begin{lstlisting}[language=Python,numbers=none]
def phasef(v, i):
    v = enumerate(v)
    v = [v_ * (-1)**int(i==j) for j,v_ in v]
    return vector(v)
    
phasef(vector(ZZ, 4, [1,1,1,1]), 2)    
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
(1, 1, -1, 1)
\end{verbatim}


\begin{lstlisting}[language=Python,numbers=none]
def imeanf(v):
    N = ZZ(len(v))
    M = matrix(QQ, len(v), len(v), [1/N]*N**2)
    I = identity_matrix(N)
    return (-I + 2*M)*v

imeanf(vector(ZZ, 5, [53,38,17,23,79]))
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
(31, 46, 67, 61, 5)
\end{verbatim}
\end{column}
\begin{column}{0.55\columnwidth}
\pause

\begin{lstlisting}[language=Python,numbers=none]
v = vector(RealField(prec=12), 5, [10]*5)
print(f"  input: {v}")
v = phasef(v, i=3); print(f"step 1a: {v}")
v = imeanf(v); print(f"step 1b: {v}, Δ: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 2a: {v}")
v = imeanf(v); print(f"step 2b: {v}, Δ: {max(v)-min(v)}")
v = phasef(v, i=3); print(f"step 3a: {v}")
v = imeanf(v); print(f"step 3b: {v}, Δ: {max(v)-min(v)}")
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
  input: (10.0, 10.0, 10.0, 10.0, 10.0)
step 1a: (10.0, 10.0, 10.0, -10.0, 10.0)
step 1b: (2.00, 2.00, 2.00, 22.0, 2.00), Δ: 20.0
step 2a: (2.00, 2.00, 2.00, -22.0, 2.00)
step 2b: (-7.60, -7.60, -7.60, 16.4, -7.60), Δ: 24.0
step 3a: (-7.60, -7.60, -7.60, -16.4, -7.60)
step 3b: (-11.1, -11.1, -11.1, -2.33, -11.1), Δ: 8.80
\end{verbatim}

\pause

\textbf{The optimal number of repetitions is \(\sqrt{\dim(\vec{v})}\)}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org262956a}]{Grover's Algorithm}
\begin{enumerate}
\item Start with \(\ket{\vec{0}}\)
\item Apply \(\mat{H}^{\otimes n}\)
\item Repeat \(\sqrt{2^n}\) times:
\begin{enumerate}
\item Apply phase inversion \(\mat{U}_{f} \cdot (\mat{I} \otimes \mat{H})\)
\item Apply inversion about the mean \(-\mat{I} + 2 \mat{M}\)
\end{enumerate}
\item Measure the qubits
\end{enumerate}
\end{frame}
\begin{frame}[label={sec:orgc992dfd}]{Recap: Grover vs AES}
Best known quantum algorithms for attacking symmetric cryptography are based on Grover’s algorithm. 

\begin{itemize}
\item Search key space of size \(2^n\) in \(2^{n/2}\) operations: AES-256 \(\rightarrow\) 128 “quantum bits of security”.
\item Taking all costs into account: \(> 2^{152}\) classical operations for AES-256.\footfullcite{EC:JNRV20}
\item Assuming a max depth of \(2^{96}\) for a quantum circuit: overall AES-256 cost is \(\approx 2^{190}\).
\item Does not parallelise: have to wait for \(2^{X}\) steps, cannot buy \(2^{32}\) quantum computers and wait \(2^X / 2^{32}\) steps.
\end{itemize}
\end{frame}
\section{Shor's Algorithm}
\label{sec:org2697d24}
\begin{frame}[label={sec:orga390787}]{Task}
\begin{center}
Given \(N = p \cdot q\) for \(p,q\) prime find \(p\) or \(q\).
\end{center}
\end{frame}
\begin{frame}[label={sec:orgfba1af9},fragile]{A Magical New Operation}
 Consider a function \(f_{a,N}(x)\) for any \(0 < a < N\), which computes \(f_{a,N}(x) \coloneqq a^{x} \bmod N\)
\begin{columns}[t]
\begin{column}{0.35\columnwidth}
\textbf{Example:}

\begin{lstlisting}[language=Python,numbers=none]
p, q = 13, 15
N = p*q
a = 2

def f(x):
    return power_mod(a, x, N)

f(13)
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
2
\end{verbatim}
\end{column}
\begin{column}{0.65\columnwidth}
\begin{lstlisting}[language=Python,numbers=none]
p, q = 3, 5
N = p*q
a = 2

[list(range(N)), None, [f(i) for i in range(N)]]
\end{lstlisting}
\end{column}
\end{columns}
\begin{table}[htbp]
\centering
\begin{tabular}{rrrrrrrrrrrrrrr}
\toprule
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\\
\midrule
1 & 2 & 4 & 8 & 1 & 2 & 4 & 8 & 1 & 2 & 4 & 8 & 1 & 2 & 4\\
\bottomrule
\end{tabular}
\label{}

\end{table}
\end{frame}
\begin{frame}[label={sec:org3e08199}]{A Magical New Operation}
\begin{columns}[t]
\begin{column}{0.6\columnwidth}
\begin{theorem}[Euler's Theorem]
For any modulus \(N\) and any coprime integer \(a\), it holds that
\[a^{\phi(n)} \equiv 1 \bmod N\]
where \(\phi(n)\), Euler's totient function, counts the integers up to \(n\) relatively prime to \(n\).
\label{thm:eulers-theorem}
\end{theorem}
\end{column}
\begin{column}{0.4\columnwidth}
\begin{itemize}
\item So \(f_{a,N}(\cdot)\) should have some period \(r\): \(f_{a,N}(x) \equiv f_{a,N}(x + r)\).
\item We can implement \(f_{a,N}(\cdot)\) efficiently on classical and on quantum computers
\item On a quantum computer, we can find this period efficiently but this assumed hard on classical computers.
\end{itemize}
\end{column}
\end{columns}
\begin{alertblock}{A Magical New Operation}
Let \(\mathcal{P}(a,N)\) be an oracle that outputs \(r\) s.t. \(f_{a,N}(x) \equiv f_{a,N}(x + r)\).
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org80eb49c}]{Factoring with that Magical New Operation}
\begin{enumerate}
\item Pick a random \(2 \leq a < N\).
\item If \(\gcd(a, N) \neq 1\), output \(a\) as a factor of \(N\).
\item \alert{Call \(\mathcal{P}(a,N)\) and retrieve \(r\).}
\item If \(r\) is not even, start over.
\item We have \(a^{r} \equiv 1 \bmod N\) and thus \(N \mid (a^{r} -1)\).
\item Write \(a^{r} -1 = (\sqrt{a^r} + 1)\cdot(\sqrt{a^r} - 1)\).\footnote{\(x^2 - y^2 = (x-y)\cdot(x+y)\)}
\item So we get \(N \mid (a^{r/2} -1) \cdot (a^{r/2} + 1)\), i.e. any factor of \(N\) is a factor of \((a^{r/2} -1)\), \((a^{r/2} + 1)\) or both
\begin{enumerate}
\item It can't be that \(N \mid a^{r/2} - 1\) because the period is \(r\) and not \(r/2\)
\item It could be that \(N \mid a^{r/2} + 1\) and then the algorithm fails
\end{enumerate}
\item Compute \(d \coloneqq \gcd(N, a^{r/2} + 1)\)
\end{enumerate}
\end{frame}
\begin{frame}[label={sec:org1d55412}]{The Magical New Operation}
\begin{enumerate}
\item We can implement \(f_{a,N}(\cdot)\) as a quantum circuit \(\mat{U}_{f_{a,N}(\cdot)}\) acting on \(m \coloneqq  \lceil \log N^{2} \rceil\) qubits
\item We can apply Hadamard gates on the inputs before applying \(\mat{U}_{f_{a,N}(\cdot)}\)
\item This gives us a state\footnote{I'm identifying the binary representation \(\vec{x}\) of \(x\) with \(x\) here.}

\[\ket{\phi_2} \coloneqq \frac{\sum_{\vec{x} \in\bin^{m}}\ket{\vec{x},\, f_{a,N}(\vec{x})}}{\sqrt{2^{m}}} = \frac{\sum_{\vec{x} \in\bin^{m}}\ket{\vec{x},\, a^{\vec{x}} \bmod N}}{\sqrt{2^{m}}}.\]
\item The final ingredient is a \alert{Quantum Fourier Transform} (QFT) which more or less extracts the period from such a state.\footnote{I have yet to find a simple way of explaining it :(}
\end{enumerate}
\end{frame}
\begin{frame}[label={sec:org411ccb0}]{Recap: Shor vs RSA, DH, …}
\begin{center}
\includegraphics[keepaspectratio,height=.8\textheight]{./lecture-assumptions-shor.jpg}
\end{center}
\end{frame}
\section{Commitment Schemes}
\label{sec:orgd14afe1}
\begin{frame}[label={sec:org80ed93f}]{Commitment Schemes}
\begin{columns}
\begin{column}[t]{0.6\columnwidth}
\pseudocodeblock[mode=text]{
\textbf{Alice} \< \< \textbf{Bob}\\[0.1\baselineskip][\hline]
\< \< \\[-0.5\baselineskip]
\(\vec{r} \sample \bin^{\secpar}\) \< \sendmessageleft*{\vec{k}} \< \\
\(\vec{m} \in \bin^{\secpar}\) \< \sendmessageright{top={\(\vec{c}\)},bottom=(commitment)} \<\\[-0.5\baselineskip]
\(\Com_{\vec{k}}(\vec{m}, \vec{r}) = \vec{c}\) \<  \<\\[-0.5\baselineskip]
 \< \sendmessageright{top={\(\vec{m},\vec{r}\)},bottom=(opening)} \<
}
\end{column}
\begin{column}[t]{0.4\columnwidth}
\textbf{Statistically Hiding:}

\[\Pr\left[
    b' = b
    \middle|
    \begin{array}{r}
      (\vec{m}_0, \vec{m}_1) \gets \adv(\vec{k})\\
      b \gets \bin\\
      \vec{r} \sample \bin^{\secpar}\\
      \vec{c} \gets \Com_k(\vec{m}_b, \vec{r})\\
      b' \gets \adv(\vec{c})
    \end{array}
  \right] = \frac{1}{2}
\]

for any \(\adv\).
\end{column}
\end{columns}
\textbf{Computationally Binding:} ``PPT adversary cannot change its mind after sending \(c\)''

\pause

\alert{How should we formalise this?}
\end{frame}
\begin{frame}[label={sec:org4ba82bb}]{Classical Definition}
``PPT adversary cannot change its mind after sending \(c\)''
\begin{alertblock}{Classical Definition}
PPT \(\adv\) cannot find \((\vec{m},\vec{r},\vec{m}',\vec{r}')\) where \(\vec{m} \neq \vec{m}'\) and
\[
\Com_\vec{k}(\vec{m},\vec{r}) = \Com_\vec{k}(\vec{m}', \vec{r}').
\]
\end{alertblock}
In particular, any collision-resistant hash function implies a binding commitment scheme.
\begin{alertblock}<all:0>{Punchline}
This is not true if \(\adv\) is a quantum adversary.
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:orgf91de38}]{Interlude}
\begin{itemize}
\item A commitment scheme cannot be statistically hiding and statistically binding at the same time
\begin{itemize}
\item If it is statistically hiding this means that for any \(\vec{c} = \Com_{\vec{k}}(\vec{m}, \vec{r})\) there exists some \(\vec{r}'\) such that \(\vec{c} = \Com_{\vec{k}}(\vec{m}', \vec{r}')\) for any \(\vec{m}'\).
\item If it is statistically binding this means that for any \(\vec{c} = \Com_\vec{k}(\vec{m},\vec{r})\) there exists no \(\vec{r}'\) such that \(\vec{c} = \Com_{\vec{k}}(\vec{m}', \vec{r})\) for any \(\vec{m}' \neq \vec{m}\).
\end{itemize}

\item Any IND-CPA secure encryption scheme is a hiding commitment scheme
\item Any perfectly-correct encryption scheme is a binding commitment scheme, otherwise decryption might fail
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org31ce42b}]{Classical Definition}
``PPT adversary cannot change its mind after sending \(c\)''
\begin{block}{Classical Definition}
PPT \(\adv\) cannot find \((\vec{m},\vec{r},\vec{m}',\vec{r}')\) where \(\vec{m} \neq \vec{m}'\) and
\[
\Com_\vec{k}(\vec{m},\vec{r}) = \Com_\vec{k}(\vec{m}', \vec{r}').
\]
\end{block}
In particular, any collision-resistant hash function implies a binding commitment scheme.
\begin{alertblock}{Punchline}
This is not true if \(\adv\) is a quantum adversary.
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org97e3d17}]{Attack on Classical Definition I}
There exists a quantum-secure collision-resistant hash function \(H\) where \(\adv\) can open \(\Com_\vec{k}(\vec{m},\vec{r}) \coloneqq H(\vec{m},\vec{r})\) to any \(\vec{m}\).\footfullcite{FOCS:AmbRosUnr14,EC:Unruh16}

\begin{itemize}
\item Quantum adversary cannot find two pairs \((\vec{m},\vec{r})\), \((\vec{m}',\vec{r}')\) that agree on \(\Com_\vec{k}(\vec{m},\vec{r}) = \Com_\vec{k}(\vec{m},\vec{r})\)
\item But it can open to some message \(\vec{m}\) even if it learns it after sending \(\vec{c}\).
\end{itemize}
\begin{alertblock}{Caveat}
The attack depends on an oracle that we do not know how to build. But even with this oracle collision resistance holds.
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org49b3cbb}]{Attack on Classical Definition II}
\begin{enumerate}
\item Prepare a quantum state
\[\ket{\phi} \coloneqq \left[\frac{\sum_{\vec{m},\vec{r} \in \bin^\secpar \times \bin^\secpar} \ket{\vec{m}} \ket{\vec{r}}}{\sqrt{2^{2\,\secpar}}}\right] \quad \ket{0}\]
\item Apply \(H\) on the first two registers and add result to the third
\[\ket{\phi} \coloneqq \frac{\sum_{\vec{m},\vec{r} \in \bin^\secpar \times \bin^\secpar} \ket{\vec{m}}\ket{\vec{r}} \ket{H(\vec{m},\vec{r})}}{\sqrt{2^{2\,\secpar}}}\]
\item Measure the third register to obtain some value \(\vec{h}\)
\[\ket{\phi} \coloneqq \frac{\sum_{(\vec{m},\vec{r})\, \mid\, \vec{h} = H(\vec{m},\vec{r})} \ket{\vec{m}}\ket{\vec{r}}}{\sqrt{\mid \{(\vec{m},\vec{r}) \mid h = H(\vec{m},\vec{r})\} \mid}} \ket{\vec{h}}\]
The first register now contains \alert{all} preimages of \(\vec{h}\).
\end{enumerate}
\end{frame}
\begin{frame}[label={sec:orge2e914f}]{Attack on Classical Definition III}
\begin{enumerate}
\setcounter{enumi}{3}
\item Use the magic oracle\footnote{This is a variant of Grover's algorithm but we don't know how to implement the required steps.} to filter \(\bigg\{(\vec{m},\,\vec{r}) \mid \vec{h} = H(\vec{m},\,\vec{r})\bigg\}\) to
\[
   \bigg\{(\vec{m},\,\vec{r}) \mid \vec{h} = H(\vec{m},\,\vec{r}) \land \vec{m} = \vec{m}_{0}\bigg\}
   \]
for any chosen \(\vec{m}_{0}\).
\item Measure the first register to obtain \((\vec{m}_{0}, \vec{r})\) and submit as an opening.
\end{enumerate}
\begin{alertblock}{Collision Resistance}
This does not violate collision resistance because we are ``using up'' our state, i.e. we can only measure once, still.   
\end{alertblock}
\end{frame}
\begin{frame}[label={sec:org3dfec82}]{Corrected Definition: Formalising the Attacker}
\textbf{Can write down our attacker like this:}

\pseudocodeblock{
\textbf{Alice} \< \< \textbf{Bob}\\[0.1\baselineskip][\hline]
\< \< \\[-0.5\baselineskip]
   \< \sendmessageleft*{k} \< \\
\ket{\mat{S}, \mat{M}, \mat{R}} \< \sendmessageright{top={c},bottom=(commitment)} \<\pclb
\pcintertext[dotted]{}
\ket{\mat{S}, \mat{M}, \mat{R}} \<  \<\\[-0.25\baselineskip]
\text{measure } \ket{\mat{S}, \mat{M}, \mat{R}} \< \<\\[-0.75\baselineskip]
\text{obtain } \vec{m}, \vec{r} \< \sendmessageright{top={\vec{m}, \vec{r}},bottom=(opening)} \< 
}
\end{frame}
\begin{frame}[label={sec:orgc94b879}]{Corrected Definition: What does ideal look like?}
\begin{columns}
\begin{column}{0.65\columnwidth}
\procedure[linenumbering,mode=text]{Collapse-binding Commitment}{%
\(b \sample \bin\); \(k \sample \bin^{\secpar}\)\\
\(\vec{c}, \ket{\mat{S}, \mat{M}, \mat{R}} \gets \adv(k)\)\\
compute \(\ket{\mat{S}, \mat{M}, \mat{R}, V_\vec{c}(\mat{M}, \mat{R})}\) \pccomment{\(V_\vec{c}(\mat{M}, \mat{R}) = 1\) iff \(\Com_{\vec{k}}(\mat{M}, \mat{R}) = \vec{c}\)}\\
measure \(\ket{V_{\vec{c}}(\mat{M}, \mat{R})} = v\)\\
\pclinecomment{measurement has no effect if \(\ket{\mat{M}} = \ket{\vec{m}}\), i.e. ``collapsed''}\\
\pcif{\(v = 1 \land b = 0\)} \pcthen \gamechange{measure \(\ket{\mat{M}}\)}\\
\(b' \gets \adv\left(\ket{\mat{S}, \mat{M}, \mat{R}, V_\vec{c}(\mat{M}, \mat{R})}\right)\)\\
\pcreturn{\(b=b'\)}
}
\end{column}
\begin{column}{0.35\columnwidth}
\fullcite{EC:Unruh16}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgd339c72}]{Collapsing Hash Functions}
\begin{columns}
\begin{column}{0.45\columnwidth}
\begin{figure}[H]
\begin{gameproof}[nr=-1,arg={}]
\procedure[linenumbering,mode=text]{Collapsing Hash Function $H$}{%
\(b \sample \bin\)\\
\(\ket{\psi}_{0} \coloneqq \ket{\mat{S}} \sum_{\vec{x}} \ket{\vec{x}, \vec{0}} \gets \adv(H)\)\\
\(\ket{\psi}_{1} \coloneqq \ket{\mat{S}} \sum_{\vec{x}} \ket{\vec{x}, H(\vec{x})}\)\\
\pcif{\(b = 0\)}\pcthen\\
\pcind \gamechange{measure \(\ket{\vec{x}} \in \ket{\psi}_{1} \rightarrow \ket{\psi}_{2}\)}\\
\pcelse\\
\pcind measure \(\ket{H(\vec{x})}  \in \ket{\psi}_{1}  \rightarrow \ket{\psi}_{2}\)\\
\(b' \gets \adv\left({\ket{\psi}_2}\right)\)\\
\pcreturn{\(b = b'\)}
}
\end{gameproof}
\caption{\label{fig:collapsing-hash-function}Collapsing Hash Function}
\end{figure}
\end{column}
\begin{column}{0.55\columnwidth}
\textbf{Game indeed differs:}

\begin{itemize}
\item \(b=0\): collapses to a single input-output pair
\item \(b=1\): collapses to all preimages of measured value \(H(\vec{x})\)
\end{itemize}

\noindent\rule{\textwidth}{0.5pt}

\autocite{EC:Unruh16}: This implies collapse-binding commitments.
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orge82e3b6}]{A New Classical Definition}
Any \alert{somewhere statistically binding} hash function is collapsing.
\end{frame}
\begin{frame}[label={sec:org56cd5fd}]{Somewhere Statistically Binding (SSB)}
\begin{itemize}
\item Consider \(H(\vec{x}_{0} \mid \vec{x}_{1} \mid \ldots \mid \vec{x}_{\ell-1})\)
\item There are ``modes'' \(H^{(i)}(\vec{x}_{0} \mid \vec{x}_{1})\) that are \textbf{statistically binding} to block \(\vec{x}_{i}\)
\item We also have ``index hiding'': \(H \approx_{c} H^{(i)} \approx_{c} H^{(j)}\) for any \(i, j\).
\end{itemize}

\noindent\rule{\textwidth}{0.5pt}

\begin{itemize}
\item Since \(H()\) is compressing it it cannot be statistically binding to its input
\item But it can be be statistically binding for one small block
\item If cannot tell which block it is statistically binding to, have an SSB hash function
\item Can build this from a perfectly correct fully-homomorphic encryption scheme
\end{itemize}
\end{frame}
\begin{frame}[label={sec:org0de8fe8},standout]{Fin}
\begin{center}
If you take nothing else from this lecture: quantum computers won't solve hard problems instantly by just trying all solutions in parallel.

{\tiny Credit: \url{https://scottaaronson.blog/} }\par
\end{center}
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