
The Learning with Errors Problem
Advanced Topics in CybersecurityCryptography (7CCSMATC)

Martin R. Albrecht

Outline

Learning with Errors

LWE and Lattices

Algebraic Variants

LWE Encryption

Learning with Errors

Main reference

Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In: Journal of the ACM 56.6 (Sept.
2009), 34:1–34:40. issn: 0004-5411 (print), 1557-735X (electronic).
doi: http://doi.acm.org/10.1145/1568318.1568324

https://doi.org/http://doi.acm.org/10.1145/1568318.1568324

TL;DR: The Internet will run on this stuff

“Small Elements” mod q

• We can represent Zq with integers {0, 1, . . . ,q− 1}
• We can also represent Zq with integers {−bq/2c,−bq/2c+ 1, . . . , bq/2c}
• Example:

q = 17

K = GF(q)

[[e.lift() for e in K], [e.lift_centered() for e in K]]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1

• The latter representation is called “centred” or “balanced”.
• We often implicitly assume the “centred” representation.
• We informally say that e ∈ Zq is “small” if its balanced representation is small in
absolute value.

1-dim LWE (even easier than RSA)

KeyGen
• Pick a prime q ≈ 210,000

• Pick a random integer s ∈ Zq
• Pick about t = 20, 000 random
ai ∈ Zq and small ei ≈ 29,850

• Publish pairs
ai, ci = ai · s+ ei mod Zq

Encrypt m ∈ {0, 1}
• Pick bi ∈ {0, 1}
• d0 =

∑t−1
i=0 bi · ai

• d1 = b q2 c ·m+
∑t−1

i=0 bi · ci
• Return d0,d1

Decrypt
• Compute d = d1 − d0 · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · ci −
t−1∑
i=0

bi · ai · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · (ai · s+ ei)−
t−1∑
i=0

bi · ai · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · ei

• Return 1 if |d| > q/4 and 0 otherwise.

Toy Implementation

t = 10000

q = next_prime(2^10000, proof=False); q2 = q//2

KeyGen

s = ZZ.random_element(0, q, "uniform")

a_ = [ZZ.random_element(0, q, "uniform") for _ in range(t)]

e_ = [ZZ.random_element(y=2^9850) for _ in range(t)]

c_ = [(a_[i]*s + e_[i]) % q for i in range(t)]

Enc

m = 1

b_ = [ZZ.random_element(x=0,y=2) for _ in range(t)]

d0 = sum(b_[i]*a_[i] for i in range(t)) % q

d1 = (q2 * m + sum(b_[i]*c_[i] for i in range(t))) % q

Dec

round(((d1 - d0*s) % q)/q2), m

(1, 1)

The Learning with Errors Problem (LWE)

Given (A, c) with c ∈ Zmq , A ∈ Zm×n
q , s ∈ Znq and small e ∈ Zm is


c


=



← n →

A


×

 s

+


e


or c←$ U

(
Zmq
)
.

The Learning with Errors Problem (LWE)

Definition (LWE)
Let n, q be positive integers, χ be a probability distribution on Z and s be a uniformly
random vector in Znq. We denote by Ls,χ the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to χ and
considering it in Zq, and returning (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are sampled
according to Ls,χ or the uniform distribution on Znq × Zq.

Search-LWE is the problem of recovering s from pairs (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq
sampled according to Ls,χ.

A Fair Warning: Gaussian Distributions

• In this lecture I am ignoring the specifics of the distribution χ. That is, the only slide
with the phrase “Discrete Gaussian distribution” is this slide.

• In practice, for encryption the shape of the error does not seem to matter much.
• Ignoring the distribution allows to brutally simply proof sketches: almost all
technical difficulty in these proofs derives from arguing about two distributions
being close.

Normal Form LWE

Consider
• Ai ∈ Zn×nq , s ∈ Znq, ei ←$ χn,
• c0 = A0 · s+ e0 and
• c1 = A1 · s+ e1
• We have with high probability

c′ = c1 − A1 · A−10 · c0
= A1 · s+ e1 − A1 · A−10 (A0 · s+ e0)
= A1 · s+ e1 − A1 · s− A1 · A−10 · e0
= −A1 · A−10 · e0 + e1
= A′ · e0 + e1

• We might as well assume that our
secret is also sampled from χ.

• Benny Applebaum, David Cash,
Chris Peikert, and Amit Sahai. Fast
Cryptographic Primitives and
Circular-Secure Encryption Based on
Hard Learning Problems. In:
CRYPTO 2009. Ed. by Shai Halevi.
Vol. 5677. LNCS. Springer, Berlin,
Heidelberg, Aug. 2009, pp. 595–618. doi:
10.1007/978-3-642-03356-8_35

https://doi.org/10.1007/978-3-642-03356-8_35

Dimension/Modulus Trade-Off

Consider a, s ∈ Zdq where s is small, then

qd−1 · 〈a, s〉 ≈
(d−1∑

i=0

qi · ai

)
·

(d−1∑
i=0

qd−i−1 · si

)
mod qd = ã · s̃ mod qd.

If there is an efficient algorithm solving the problem in Zqd , we can solve the problem in
Zdq.

Example (Zq2)

q · (a0 · s0 + a1 · s1) + a0 · s1 + q2 · a1 · s0 mod q = (a0 + q · a1) · (q · s0 + s1)

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In: 45th ACM STOC. ed. by Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum. ACM Press, June 2013, pp. 575–584. doi: 10.1145/2488608.2488680

https://doi.org/10.1145/2488608.2488680

LWE and Lattices

Lattices

• A lattice is a discrete subgroup of Rd

• It can be written as

Λ =

{d−1∑
i=0

vi · bi | vi ∈ Z

}

for some basis vectors bi.
• We write Λ(B) for the lattices spanned
by the columns of B.

• A lattice is q-ary if it contains qZd, e.g.
{x ∈ Zd | x · A ≡ 0} for some A ∈ Zd×d′ .

Picture credit: David Wong

Shortest Vector Problem

Definition
Given a lattice basis B, find a shortest
non-zero vector in Λ(B).

• The most natural problem on lattices
• We write λ1(Λ) for the Euclidean norm
of a shortest vector.

• NP-hard to solve exactly
• Cryptography relies on approximate
variants without such a reduction

Picture credit: David Wong

Bounded Distance Decoding

Definition
Given a lattice basis B, a vector t, and a
parameter 0 < α such that the Euclidean
distance dist(t,B) < α · λ1(Λ(B)), find the
lattice vector v ∈ Λ(B) which is closest to t.

• When α < 1/2 unique decoding is
guaranteed but for α < 1 we typically
still expect unique decoding.

• BDD is a special case of the Closest
Vector Problem where there is no bound
on the distance to the lattice.

Picture credit: David Wong

LWE is Bounded Distance Decoding (BDD) on Random q-ary Lattices

Let

L =
(
qI A
0 I

)
We can reformulate the matrix form of the LWE equation A · s+ e ≡ c mod q as a linear
system over the Integers as:

L ·
(
∗
s

)
+

(
e
−s

)
=

(
qI −A
0 I

)
·

(
∗
s

)
+

(
e
−s

)
=

(
c
0

)

The vector (cT ,0T)T is close to the lattice Λ (L) with offset (eT ,−sT)T .

Is that a Good Choice?

• Maybe BDD on random q-ary lattices is easier than BDD in general?
• Maybe BDD is easier than SVP?

Sketch: BDD on Random q-ary Lattices solves BDD on any Lattice

• We are given some basis B ∈ Zd×d and some target t s.t. t = B · s+ e with e small
• Pick some large q ≥ 22d

• Sample some U (see below)
• Set A = U · B mod q and consider c = U · t+ e′ with e′ small

c = U · t+ e′ = U · (B · s+ e) + e′ = U · B · s+ U · e+ e′ = A · s+ e′′

• We can pick U
• large enough to make A uniform mod q and
• small enough to make U · e+ e′ small and well distributed

using “smoothing parameter” arguments on Λ(B−T)

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In:
Journal of the ACM 56.6 (Sept. 2009), 34:1–34:40. issn: 0004-5411 (print), 1557-735X
(electronic). doi: http://doi.acm.org/10.1145/1568318.1568324

https://doi.org/http://doi.acm.org/10.1145/1568318.1568324

Sketch: Solving BDD on any Lattice implies solving GapSVP

Say we want to decide if λ1(Λ) ≤ 1 or λ1(Λ) > γ and we have a BDD solver with α = c · γ.

• Pick a random z ∈ Λ, add a small error e of norm c · γ
• Run the BDD solver.
• If it returns z then output λ1(Λ) > γ, else output λ1(Λ) ≤ 1.1

• Regev showed: If you have a BDD solver you can find a short basis on a quantum
computer2

1Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: 41st ACM STOC.
ed. by Michael Mitzenmacher. ACM Press, 2009, pp. 333–342. doi: 10.1145/1536414.1536461.
2Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In: Journal of the ACM 56.6 (Sept. 2009),
34:1–34:40. issn: 0004-5411 (print), 1557-735X (electronic). doi: http://doi.acm.org/10.1145/1568318.1568324.

https://doi.org/10.1145/1536414.1536461
https://doi.org/http://doi.acm.org/10.1145/1568318.1568324

Concrete Hardness: Cryptanalysis

• This tells us random q-ary lattices are not a terrible choice
• To establish how long it actually takes to solve LWE, we rely on cryptanalysis

from estimator import *

schemes.Kyber512

LWEParameters(n=512, q=3329, Xs=D(σ=1.22), Xe=D(σ=1.22), m=512, tag='Kyber 512')

LWE.primal_usvp(schemes.Kyber512)

rop: ≈2^143.8, red: ≈2^143.8, δ: 1.003941, β: 406, d: 998, tag: usvp

https://github.com/malb/lattice-estimator/

https://github.com/malb/lattice-estimator/

Algebraic Variants

LWE



c0
c1
c2
c3
c4
c5
c6
c7


=



a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7
a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7
a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7
a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7
a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7


Performance
Storage: O(n2); Computation O(n2)

Ring-LWE/Polynomial-LWE



c0
c1
c2
c3
c4
c5
c6
c7


=



a0 −a7 −a6 −a5 −a4 −a3 −a2 −a1
a1 a0 −a7 −a6 −a5 −a4 −a3 −a2
a2 a1 a0 −a7 −a6 −a5 −a4 −a3
a3 a2 a1 a0 −a7 −a6 −a5 −a4
a4 a3 a2 a1 a0 −a7 −a6 −a5
a5 a4 a3 a2 a1 a0 −a7 −a6
a6 a5 a4 a3 a2 a1 a0 −a7
a7 a6 a5 a4 a3 a2 a1 a0


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7



Ring-LWE/Polynomial-LWE

n−1∑
i=0

ci · Xi =
(n−1∑

i=0

ai · Xi
)
·

(n−1∑
i=0

si · Xi
)

+
8∑
i=0

ei · Xi mod Xn + 1

c(X) = a(X) · s(X) + e(X) mod φ(X)

Performance (n is a power of two)
Storage: O(n); Computation O(n log n)

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient Public Key Encryption Based on Ideal
Lattices. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 617–635. doi: 10.1007/978-3-642-10366-7_36; Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
Ideal Lattices and Learning with Errors over Rings. In: EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS.
Springer, Berlin, Heidelberg, 2010, pp. 1–23. doi: 10.1007/978-3-642-13190-5_1

https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-13190-5_1

Module-LWE



c0,0
c0,1
c0,2
c0,3
c1,0
c1,1
c1,2
c1,3


=



a0,0 −a0,3 −a0,2 −a0,1 a1,0 −a1,3 −a1,2 −a1,1
a0,1 a0,0 −a0,3 −a0,2 a1,1 a1,0 −a1,3 −a1,2
a0,2 a0,1 a0,0 −a0,3 a1,2 a1,1 a1,0 −a1,3
a0,3 a0,2 a0,1 a0,0 a1,3 a1,2 a1,1 a1,0
a2,0 −a2,3 −a2,2 −a2,1 a3,0 −a3,3 −a3,2 −a3,1
a2,1 a2,0 −a2,3 −a2,2 a3,1 a3,0 −a3,3 −a3,2
a2,2 a2,1 a2,0 −a2,3 a3,2 a3,1 a3,0 −a3,3
a2,3 a2,2 a2,1 a2,0 a3,3 a3,2 a3,1 a3,0


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7



Module-LWE

(
c0(X)
c1(X)

)
=

(
a0(X) a1(X)
a2(X) a3(X)

)
·

(
s0(X)
s1(X)

)
+

(
e0(X)
e1(X)

)

Performance (n is a power of two)
Storage: O(k2 · n); Computation O(k2 · n log n)

Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. In: Designs,
Codes, and Cryptography 75.3 (June 2015), pp. 565–599. issn: 0925-1022 (print), 1573-7586 (electronic). doi:
http://dx.doi.org/10.1007/s10623-014-9938-4. url:
http://link.springer.com/article/10.1007/s10623-014-9938-4

https://doi.org/http://dx.doi.org/10.1007/s10623-014-9938-4
http://link.springer.com/article/10.1007/s10623-014-9938-4

LWE Encryption

Convention

• I am going to use the Ring-LWE formulation

ci(X) = ai(X) · s(X) + ei(X)

Thus, each sample corresponds to “n LWE samples”
• I will suppress the “(X)” in “a(X)” etc.
• I will assume s is “small” and that the product of two “small” things is “small”.
• I will write ei to emphasise that ei is small.

TL;DR: I will write

ci = ai · s+ ei

DH to Ring-LWE Dictionary

DH Land Ring-LWE Land

g a
gx a · s+ e

gx · gy = gx+y (a · s+ e0) + (a · t + e1) = a · (s+ t) + e′

(ga)b = (gb)a (a · s+ e) · t = (a · s · t + e · t)
≈ a · s · t ≈ (a · t + e) · s

(g,ga,gb,gab) (a, a · s+ e, a · t + d, a · s · t + e′)
≈c (g,ga,gb,u) ≈c (a, a · s+ e, a · t + d, u)

Regev’s Encryption Scheme

You have already seen it.

KeyGen Publish ci = ai · s+ ei for i = 0, . . . , d2n log qe
Encrypt

d0 =
∑

bi · ai, d1 =
(∑

bi · ci
)
+ bq/2c ·m with bi ∈ {0, 1},m ∈ {0, 1}n

Decrypt ⌊
2
q
· (d1 − d0 · s)

⌉
=

⌊
2
q
·
((∑

bi · ci
)
+
⌊q
2

⌋
·m−

∑
bi · ai · s

)⌉
=

⌊
2
q
·
((∑

bi · (ai · s+ ei)
)
+
q
2
·m−

∑
bi · ai · s

)⌉
=

⌊
2
q
·
((∑

bi · ei
)
+
⌊q
2

⌋
·m
)⌉

= m

The public key is indistinguishable from uniform by the LWE assumption and
∑
bi · ai is

statistically close to uniformly random by the Leftover Hash Lemma (LHL).

ElGamal & LPR10

ElGamal

KeyGen h = gx

Encrypt d0, d1 = (gr, m · hr) for some random r
Decrypt d1/dx0 = m · (gx)r/(gr)x = m

[LPR10]

KeyGen c = a · s+ e
Encrypt d0, d1 = v · a+ e′, v · c + e′′ +

⌊ q
2
⌋
·m

Decrypt ⌊
2
q
· (d1 − d0 · s)

⌉
=

⌊
2
q
·
(
v · (a · s+ e) + e′′ +

⌊q
2

⌋
·m− (v · a+ e′) · s

)⌉
=

⌊
2
q
·
(
v · e+ e′′ +

⌊q
2

⌋
·m− e′ · s

)⌉
= m

Proof Sketch

KeyGen c = a · s+ e
• The public key (a, c) is indistinguishable from uniform (u′,u′′) by the
(Ring-)LWE assumption

Encrypt d0, d1 = v · a+ e′, v · c + e′′ + q/2 ·m
• Then v · u′ + e′′, v · u′′ + e′′ is indistinguishable from uniform by the
(Ring)-LWE assumption

Reconciliation i

Once you have ElGamal, recovering Diffie-Hellman is straight forward.

Common a

Alice c0 = s · a+ e0
Bob c1 = a · t + e1

Shared
c0 · t = (s · a+ e0) · t ≈ s · a · t ≈ s · (a · t + e1) = s · c1

Reconciliation ii

c0 · t = (s · a+ e0) · t ≈ s · a · t ≈ s · (a · t + e1) = s · c1

• The problem with this construction is that “≈” 6= “=”

• Need to send a “hint” how to round correctly (2nd most significant bit)3

• Cannot have efficient Non-interactive Key Exchange (NIKE) without new ideas4

3Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors
Problem. Cryptology ePrint Archive, Report 2012/688. 2012. url: https://eprint.iacr.org/2012/688.
4Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the Efficiency of (Ring) LWE-Based Non-interactive Key
Exchange. In: Journal of Cryptology 35.1 (Jan. 2022), p. 1. doi: 10.1007/s00145-021-09406-y.

https://eprint.iacr.org/2012/688
https://doi.org/10.1007/s00145-021-09406-y

Practical Performance (Zen4)

Curve25519

Key generation ≈ 100,000 cycles
Key agreement ≈ 110,000 cycles

Public key 32 bytes
Key Share 32 bytes

https://bench.cr.yp.to/results-dh.html

Kyber-768

Key generation ≈ 30,000 cycles
Encapsulation ≈ 40,000 cycles
Decapsulation ≈ 32,000 cycles
Ciphertext 1,088 bytes
Public key 1,184 bytes

https://bench.cr.yp.to/results-kem.html

Interpretation

• An Ethernet frame takes 1,500 bytes
• Your laptop does about 2 · 109 cycles per second

https://bench.cr.yp.to/results-dh.html
https://bench.cr.yp.to/results-kem.html

Fin

… noisy linear algebra mod q

References i

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
Cryptographic Primitives and Circular-Secure Encryption Based on Hard
Learning Problems. In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS.
Springer, Berlin, Heidelberg, Aug. 2009, pp. 595–618. doi:
10.1007/978-3-642-03356-8_35.

[BLPRS13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In: 45th ACM STOC.
Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June
2013, pp. 575–584. doi: 10.1145/2488608.2488680.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key
Exchange Scheme Based on the Learning with Errors Problem. Cryptology
ePrint Archive, Report 2012/688. 2012. url:
https://eprint.iacr.org/2012/688.

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1145/2488608.2488680
https://eprint.iacr.org/2012/688

References ii

[GKRS22] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the
Efficiency of (Ring) LWE-Based Non-interactive Key Exchange. In: Journal of
Cryptology 35.1 (Jan. 2022), p. 1. doi: 10.1007/s00145-021-09406-y.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors over Rings. In: EUROCRYPT 2010. Ed. by Henri Gilbert.
Vol. 6110. LNCS. Springer, Berlin, Heidelberg, 2010, pp. 1–23. doi:
10.1007/978-3-642-13190-5_1.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. In: Designs, Codes, and Cryptography 75.3 (June 2015),
pp. 565–599. issn: 0925-1022 (print), 1573-7586 (electronic). doi:
http://dx.doi.org/10.1007/s10623-014-9938-4. url:
http://link.springer.com/article/10.1007/s10623-014-9938-4.

https://doi.org/10.1007/s00145-021-09406-y
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/http://dx.doi.org/10.1007/s10623-014-9938-4
http://link.springer.com/article/10.1007/s10623-014-9938-4

References iii

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: 41st ACM STOC. Ed. by Michael Mitzenmacher.
ACM Press, 2009, pp. 333–342. doi: 10.1145/1536414.1536461.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In: Journal of the ACM 56.6 (Sept. 2009), 34:1–34:40. issn:
0004-5411 (print), 1557-735X (electronic). doi:
http://doi.acm.org/10.1145/1568318.1568324.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
Public Key Encryption Based on Ideal Lattices. In: ASIACRYPT 2009. Ed. by
Mitsuru Matsui. Vol. 5912. LNCS. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 617–635. doi: 10.1007/978-3-642-10366-7_36.

https://doi.org/10.1145/1536414.1536461
https://doi.org/http://doi.acm.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-642-10366-7_36

	Learning with Errors
	LWE and Lattices
	Algebraic Variants
	LWE Encryption

% Intended LaTeX compiler: lualatex
\documentclass[xcolor=table,10pt,aspectratio=169]{beamer}

\RequirePackage[l2tabu,orthodox]{nag} %% Warn about obsolete commands and packages
\RequirePackage{amsmath,amsfonts,amssymb,amsthm} %% Math
\RequirePackage{ifpdf,ifxetex,ifluatex} %% Detect XeTeX and LuaTeX
\RequirePackage{xspace}
\RequirePackage{graphicx}
\RequirePackage{comment}
\RequirePackage{url}
\RequirePackage{relsize}
\RequirePackage{booktabs}
\RequirePackage{tabularx}
\RequirePackage[normalem]{ulem}
\ifluatex%
\else%
 \RequirePackage[all]{xy}
\fi%
\RequirePackage{etoolbox}
\RequirePackage{csquotes}
\RequirePackage[export]{adjustbox}

\RequirePackage{silence}
\WarningsOff[microtype]
\WarningFilter{microtype}{Unknown slot}

% https://tex.stackexchange.com/questions/64459/overfull-vbox-warning-disable
\vfuzz=30pt
\hfuzz=30pt

%%%
%%% Code Listings
%%%

\RequirePackage{listings}
\lstdefinelanguage{Sage}[]{Python}{morekeywords={True,False,sage,cdef,cpdef,ctypedef,self},sensitive=true}
\lstdefinelanguage{jupyter-python}[]{Python}{morekeywords={True,False,self},sensitive=true}

\lstset{frame=none,
 showtabs=False,
 showspaces=False,
 showstringspaces=False,
 commentstyle={\color{gray}},
 keywordstyle={\color{mLightBrown}\textbf},
 stringstyle ={\color{mDarkBrown}},
 frame=single,
 basicstyle=\tt\scriptsize\relax,
 backgroundcolor=\color{gray!190!black},
 inputencoding=utf8,
 literate={…}{{\ldots}}1,
 belowskip=0.0em,
}

\makeatletter
\patchcmd{\@verbatim}
 {\verbatim@font}
 {\verbatim@font\scriptsize}
 {}{}
\makeatother

%%%
%%% Pseudocode
%%%

\let\nl\undefine
\let\procedure\relax
\let\endprocedure\relax
\usepackage{algorithm2e}

%%%
%%% Tikz
%%%

\RequirePackage{tikz,pgfplots}
\pgfplotsset{compat=newest}

\usetikzlibrary{calc}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{positioning}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{backgrounds}
\usetikzlibrary{fit,}
\usetikzlibrary{shapes.symbols}
\usetikzlibrary{chains}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{shapes.arrows}
\usetikzlibrary{graphs}

%% Cache but disable by default

\usetikzlibrary{external}
\tikzset{external/export=false}

\definecolor{DarkPurple}{HTML}{332288}
\definecolor{DarkBlue}{HTML}{6699CC}
\definecolor{LightBlue}{HTML}{88CCEE}
\definecolor{DarkGreen}{HTML}{117733}
\definecolor{DarkRed}{HTML}{661100}
\definecolor{LightRed}{HTML}{CC6677}
\definecolor{LightPink}{HTML}{AA4466}
\definecolor{DarkPink}{HTML}{882255}
\definecolor{LightPurple}{HTML}{AA4499}
\definecolor{DarkBrown}{HTML}{604c38}
\definecolor{DarkTeal}{HTML}{23373b}
\definecolor{LightBrown}{HTML}{EB811B}
\definecolor{LightGreen}{HTML}{14B03D}
\definecolor{DarkOrange}{HTML}{FFDD00}

\pgfplotsset{width=1.0\textwidth,
 height=0.6\textwidth,
 cycle list={%
 solid,LightGreen,thick\\%
 dotted,LightRed,very thick\\%
 dashed,DarkBlue,thick\\%
 dashdotted,DarkPink,thick\\%
 dashdotdotted,LightGreen,thick\\%
 loosely dotted,very thick\\%
 loosely dashed,DarkBlue,very thick\\%
 loosely dashdotted,DarkPink,very thick\\%
 \\%
 DarkBrown,thick\\%
 },
 legend pos=north west,
 legend cell align={left}}

\pgfplotsset{select coords between index/.style 2 args={
 x filter/.code={
 \ifnum\coordindex<#1\def\pgfmathresult{}\fi
 \ifnum\coordindex>#2\def\pgfmathresult{}\fi
 }
}}

\setlength{\marginparwidth}{2cm}
\pgfplotsset{compat=1.18}

%%%
%%% SVG (Inkscape)
%%%

\ifpdf%
\providecommand{\executeiffilenewer}[3]{%
 \ifnum\pdfstrcmp{\pdffilemoddate{#1}}%
 {\pdffilemoddate{#2}}>0%
 {\immediate\write18{#3}}
 \fi%
}
\else%
\providecommand{\executeiffilenewer}[3]{%
 {\immediate\write18{#3}} % hack
}
\fi%

\providecommand{\includesvg}[2][1.0\textwidth]{%
 \executeiffilenewer{#1.svg}{#1.pdf}%
 {inkscape -z -D --file=#2.svg --export-pdf=#2.pdf --export-latex --export-area-page}%
 \def\svgwidth{#1}
 \input{#2.pdf_tex}%
}

%%%
%%% Attachments
%%%

\RequirePackage{embedfile}

%%%
%%% Metropolis Theme
%%%

\usetheme{metropolis}
\metroset{color/block=fill}
\metroset{numbering=none}
\metroset{outer/progressbar=foot}
\metroset{titleformat=smallcaps}

\setbeamercolor{description item}{fg=mLightBrown}
\setbeamerfont{footnote}{size=\scriptsize}
\setbeamercolor{example text}{fg=mDarkBrown}
\setbeamercolor{block title alerted}{fg=white, bg=mDarkBrown}
\setbeamerfont{alerted text}{series=\ifmmode\boldmath\else\bfseries\fi}

\definecolor{gamechangecolor}{HTML}{f8e8c6}

\renewcommand*{\UrlFont}{\ttfamily\relax}

%%%
%%% UTF-8 & Fonts
%%%

% \RequirePackage{unicodesymbols} % after metropolis which loads fontspec

\ifboolexpr{bool{xetex} or bool{luatex}}{%
\setmonofont[BoldFont={Cousine Bold},
 ItalicFont={Cousine Italic},
 BoldItalicFont={Cousine Bold Italic},
 Scale=0.9]{Cousine}
}{%
}

%%%
%%% BibLaTeX
%%%

\RequirePackage[backend=bibtex,
 style=alphabetic,
 maxnames=8,maxbibnames=8,maxalphanames=8,
 citestyle=alphabetic]{biblatex}

\bibliography{local.bib,abbrev3.bib,crypto_crossref.bib,rfc.bib,jacm.bib,dcc.bib}

\setbeamertemplate{bibliography item}[text]
% https://tex.stackexchange.com/questions/683533/beamer-theme-metropolis-does-not-allow-different-font-size-for-fullcite
\setbeamerfont{bibliography entry title}{size=}
\setbeamerfont{bibliography entry author}{size=}
\setbeamerfont{bibliography entry location}{size=}
\setbeamerfont{bibliography entry note}{size=}

\DeclareFieldFormat{title}{\alert{#1}}
\DeclareFieldFormat[book]{title}{\alert{#1}}
\DeclareFieldFormat[thesis]{title}{\alert{#1}}
\DeclareFieldFormat[inproceedings]{title}{\alert{#1}}
\DeclareFieldFormat[incollection]{title}{\alert{#1}}
\DeclareFieldFormat[article]{title}{\alert{#1}}
\DeclareFieldFormat[misc]{title}{\alert{#1}}

%%%
%%% Microtype
%%%

\IfFileExists{upquote.sty}{\RequirePackage{upquote}}{}
%% https://github.com/schlcht/microtype/issues/43
%% \IfFileExists{microtype.sty}{\RequirePackage{microtype}}{}
%% \IfFileExists{microtype.sty}{\PassOptionsToPackage{verbose=silent}{microtype}}{}

\setlength{\parindent}{0pt} %%
\setlength{\parskip}{6pt plus 2pt minus 1pt} %%
\setlength{\emergencystretch}{3em} %% prevent overfull lines
\setcounter{secnumdepth}{0} %%

%%%
%%% Maths
%%%

\DeclareMathOperator{\Vol}{Vol}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\GH}{GH}
\renewcommand{\vec}[1]{\ensuremath{\mathbf{#1}}\xspace}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\providecommand{\mat}[1]{\ensuremath{\vec{#1}}\xspace}
\providecommand{\ring}[0]{\ensuremath{\mathcal{R}}\xspace}

\usepackage{amsmath}
\usepackage{fontspec}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{booktabs}
\usepackage{newunicodechar}
\usepackage[notions,operators,sets,keys,ff,adversary,primitives,complexity,asymptotics,lambda,landau,advantage]{cryptocode}
\usepackage[capitalize]{cleveref}
\usepackage[,]{stmaryrd}
\usepackage[english]{babel}
\usepackage{xspace}
\usepackage{units}
\usepackage{nicefrac}
\usepackage{gensymb}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{xcolor}
\usepackage{listings}
\usepackage[color=cyan!0!magenta!4!yellow!16]{todonotes}
\PassOptionsToPackage{british}{babel}
\setbeamerfont{alerted text}{series=\ifmmode\boldmath\else\bfseries\fi}
\definecolor{gamechangecolor}{HTML}{f8e8c6}
\definecolor{BrightOrange}{HTML}{f8e8c6}
\tikzexternalize[prefix=tikz-figures/]
\newcommand{\Ldis}{\ensuremath{\mathcal{L}_{\mathbf{s},\chi}}\xspace}
\newcommand{\rhf}{{\ensuremath{\sqrt{\alpha_{\beta}}}\xspace}}
\usetheme{default}
\author{Martin R. Albrecht}
\date{}
\title{The Learning with Errors Problem}
\subtitle{Advanced Topics in \texorpdfstring{\sout{Cybersecurity}Cryptography}{Cryptography} (7CCSMATC)}
\hypersetup{
pdfauthor={Martin R. Albrecht},
pdftitle={The Learning with Errors Problem},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 30.2 (Org mode 9.7.34)},
pdflang={English},
colorlinks,
citecolor=gray,
filecolor=gray,
linkcolor=gray,
urlcolor=gray
}
\usepackage[backend=bibtex]{biblatex}

\begin{document}

\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}

\section{Learning with Errors}
\label{sec:org169a595}

\begin{frame}[label={sec:orgecbb11a}]{Main reference}
\begin{columns}
\begin{column}{0.3\columnwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./lecture-lwe-regev.jpg}
\end{center}
\end{column}
\begin{column}{0.7\columnwidth}
\fullcite{Regev:2009:LLE}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org9647699}]{TL;DR: The Internet will run on this stuff}
\begin{center}
\includegraphics[keepaspectratio,height=.9\textheight]{./lecture-lwe-nist.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgd9f5d6d},fragile]{``Small Elements'' mod \(q\)}
 \begin{itemize}
\item We can represent \(\ZZ_{q}\) with integers \(\{0, 1, \ldots, q-1\}\)
\item We can also represent \(\ZZ_{q}\) with integers \(\{-\lfloor q/2 \rfloor, -\lfloor q/2 \rfloor +1, \ldots, \lfloor q/2 \rfloor\}\)
\item Example:
\begin{lstlisting}[language=Python,numbers=none]
q = 17
K = GF(q)
[[e.lift() for e in K], [e.lift_centered() for e in K]]
\end{lstlisting}

\begin{table}[htbp]
\centering
\begin{tabular}{rrrrrrrrrrrrrrrrr}
\toprule
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1\\
\bottomrule
\end{tabular}
\label{}

\end{table}

\item The latter representation is called ``centred'' or ``balanced''.
\item We often implicitly assume the ``centred'' representation.
\item We informally say that \(e \in \ZZ_{q}\) is ``small'' if its balanced representation is small in absolute value.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgd572b42}]{1-dim LWE (even easier than RSA)}
\begin{columns}[t]
\begin{column}{0.4\columnwidth}
\alert{KeyGen}

\begin{itemize}
\item Pick a prime \(q \approx 2^{10,000}\)
\item Pick a random integer \(s \in \ZZ_q\)
\item Pick about \(t=20,000\) random \(a_i \in \ZZ_q\) and small \(e_i \approx 2^{9,850}\)
\item Publish pairs \(a_i, c_i = a_i \cdot s + e_i \bmod \ZZ_q\)
\end{itemize}

\alert{Encrypt} \(m \in \{0,1\}\)

\begin{itemize}
\item Pick \(b_i \in \{0,1\}\)
\item \(d_0 = \sum_{i=0}^{t-1} b_i \cdot a_i\)
\item \(d_1 = \lfloor \frac{q}{2} \rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot c_i\)
\item Return \(d_0, d_1\)
\end{itemize}
\end{column}
\begin{column}{0.6\columnwidth}
\alert{Decrypt}

\begin{itemize}
\item Compute \(d = d_1 - d_0 \cdot s\)
\end{itemize}
\begin{align*}
 &= \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot c_i - \sum_{i=0}^{t-1} b_i \cdot a_i \cdot s\\
 &= \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot (a_i \cdot s + e_i) - \sum_{i=0}^{t-1} b_i \cdot a_i \cdot s\\
 &= \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot e_i
\end{align*}
\begin{itemize}
\item Return 1 if \(|d| > q/4\) and 0 otherwise.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orge819bcd},fragile]{Toy Implementation}
 \begin{lstlisting}[language=python,numbers=none]
t = 10000
q = next_prime(2^10000, proof=False); q2 = q//2

KeyGen
s = ZZ.random_element(0, q, "uniform")
a_ = [ZZ.random_element(0, q, "uniform") for _ in range(t)]
e_ = [ZZ.random_element(y=2^9850) for _ in range(t)]
c_ = [(a_[i]*s + e_[i]) % q for i in range(t)]

Enc
m = 1
b_ = [ZZ.random_element(x=0,y=2) for _ in range(t)]
d0 = sum(b_[i]*a_[i] for i in range(t)) % q
d1 = (q2 * m + sum(b_[i]*c_[i] for i in range(t))) % q

Dec
round(((d1 - d0*s) % q)/q2), m
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
(1, 1)
\end{verbatim}
\end{frame}
\begin{frame}[label={sec:org5216002}]{The Learning with Errors Problem (LWE)}
Given \((\vec{A},\vec{c})\) with \(\vec{c} \in \ZZ_q^{m}\), \(\vec{A} \in \ZZ_q^{m \times n}\), \(\vec{s} \in \ZZ_q^{n}\) and \alert{small \(\vec{e} \in \ZZ^{m}\)} is

\begin{align*}
\left(\begin{array}{c}
\\
\\
\\
\vec{c} \\
\\
\\
\\
\end{array} \right) = \left(
\begin{array}{ccc}
\leftarrow & n & \rightarrow \\
\\
\\
& \vec{A} & \\
\\
\\
\\
\end{array} \right) \times \left(\begin{array}{c}
\\
\vec{s} \\
\\
\end{array} \right) \alert{+ \left(
\begin{array}{c}
\\
\\
\\
\vec{e} \\
\\
\\
\\
\end{array}
\right)}
\end{align*}

or \(\vec{c} \sample \mathcal{U}\left(\ZZ_q^{m}\right)\).
\end{frame}
\begin{frame}[label={sec:org8bbe089}]{The Learning with Errors Problem (LWE)}
\begin{definition}[LWE]
Let \(n,\,q\) be positive integers, \(\chi\) be a probability distribution on \(\ZZ\) and \(\vec{s}\) be a uniformly random vector in \(\ZZ_q^n\). We denote by \(\Ldis\) the probability distribution on \(\ZZ_q^n \times \ZZ_q\) obtained by choosing \(\vec{a} \in \ZZ_q^n\) uniformly at random, choosing \(e \in \ZZ\) according to \(\chi\) and considering it in \(\ZZ_q\), and returning \((\vec{a},c) = (\vec{a},\langle \vec{a},\vec{s} \rangle+ e) \in \ZZ_q^n \times \ZZ_q\).

\begin{description}
\item[{Decision-LWE}] is the problem of deciding whether pairs \((\vec{a}, c) \in \ZZ_q^n \times \ZZ_q\) are sampled according to \(\Ldis\) or the uniform distribution on \(\ZZ_q^n \times \ZZ_q\).

\item[{Search-LWE}] is the problem of recovering \(\vec{s}\) from pairs \((\vec{a}, c)=(\vec{a},\langle \vec{a},\vec{s}\rangle + e) \in \ZZ_q^n \times \ZZ_q\) sampled according to \(\Ldis\).
\end{description}
\label{def:Learning with Errors}
\end{definition}
\end{frame}
\begin{frame}[label={sec:orgba55989}]{A Fair Warning: Gaussian Distributions}
\begin{itemize}
\item In this lecture I am ignoring the specifics of the distribution \(\chi\). That is, the only slide with the phrase ``Discrete Gaussian distribution'' is this slide.

\item In practice, \alert{for encryption} the shape of the error does not seem to matter much.

\item Ignoring the distribution allows to brutally simply proof sketches: almost all technical difficulty in these proofs derives from arguing about two distributions being close.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orge2279e6}]{Normal Form LWE}
\begin{columns}[t]
\begin{column}{0.5\columnwidth}
Consider
\begin{itemize}
\item \(\mat{A}_{i} \in \ZZ_q^{n \times n}\), \(\vec{s} \in \ZZ_q^n\), \(\vec{e}_{i} \sample \chi^n\),
\item \(\vec{c}_0 = \mat{A}_0 \cdot \vec{s} + \vec{e}_0\) and
\item \(\vec{c}_1 = \vec{A}_1 \cdot \vec{s} + \vec{e}_1\)
\item We have with high probability
\end{itemize}
\begin{align*}
\vec{c}' &= \vec{c}_1 - \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{c}_0\\
 &= \vec{A}_1\cdot \vec{s} + \vec{e}_1 - \mat{A}_1 \cdot \mat{A}_0^{-1} (\mat{A}_0 \cdot \vec{s} + \vec{e}_0)\\
 &= \vec{A}_1\cdot \vec{s} + \vec{e}_1 - \mat{A}_1 \cdot \vec{s} - \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{e}_0\\
 &= - \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{e}_0 + \vec{e}_1\\
 &= \mat{A}' \cdot \vec{e}_0 + \vec{e}_1
\end{align*}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{itemize}
\item We might as well assume that our secret is also sampled from \(\chi\).

\item \fullcite{C:ACPS09}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org8fd5930}]{Dimension/Modulus Trade-Off}
Consider \(\vec{a}, \vec{s} \in \mathbb{Z}_{q}^{d}\) where \(\vec{s}\) is small, then
\[q^{d-1} \cdot \langle{\vec{a},\vec{s}}\rangle \approx \left(\sum_{i=0}^{d-1} q^{i} \cdot a_{i}\right) \cdot \left(\sum_{i=0}^{d-1} q^{d-i-1} \cdot s_{i}\right) \bmod q^{d} = \tilde{a} \cdot \tilde{s} \bmod q^{d}.\]
If there is an efficient algorithm solving the problem in \(\ZZ_{q^d}\), we can solve the problem in \(\mathbb{Z}_{q}^d\).
\begin{example}[\(\ZZ_{q^{2}}\)]\label{sec:org44e6c16}
\[q\cdot \left(a_{0}\cdot s_{0} + a_{1} \cdot s_{1}\right) + a_{0} \cdot s_{1} + q^{2} \cdot a_{1} \cdot s_{0} \bmod q = \left(a_{0} + q\cdot a_{1}\right) \cdot (q\cdot s_{0} + s_{1})\]
\end{example}
\fullcite{STOC:BLPRS13}
\end{frame}
\section{LWE and Lattices}
\label{sec:orgc65585e}
\begin{frame}[label={sec:orgda37791},fragile]{Lattices}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{itemize}
\item A lattice is a discrete subgroup of \(\RR^d\)
\item It can be written as
\[
 \Lambda = \left\{\sum_{i=0}^{d-1} v_i \cdot \vec{b}_i \mid v_i \in \ZZ\right\}
 \]
for some basis vectors \(\vec{b}_i\).
\item We write \(\Lambda(\mat{B})\) for the lattices spanned by the columns of \(\mat{B}\).
\item A lattice is \(q\)-ary if it contains \(q\,\ZZ^{d}\), e.g. \(\{\vec{x} \in \ZZ^{d} \mid \vec{x} \cdot \vec{A} \equiv \vec{0}\}\) for some \(\vec{A} \in \ZZ^{d \times d'}\).
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}

 \begin{scope}[scale=.6]
 \coordinate (Origin) at (0,0);
 \coordinate (XAxisMin) at (-5,0);
 \coordinate (XAxisMax) at (5,0);
 \coordinate (YAxisMin) at (0,-5);
 \coordinate (YAxisMax) at (0,5);
 \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
 \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
 %\draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);

 \begin{scope}
 \clip (-5,-5) rectangle (5,5); % Clips the picture...
 \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

 % setup the nodes
 \foreach \x in {-15,...,15}
 \foreach \y in {-15,...,15}
 {
 \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
 }
 \end{scope}
 \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org4824d8a},fragile]{Shortest Vector Problem}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{definition}
Given a lattice basis \(\mat{B}\), find a shortest non-zero vector in \(\Lambda(\mat{B})\).
\end{definition}

\begin{itemize}
\item The most natural problem on lattices
\item We write \(\lambda_{1}(\Lambda)\) for the Euclidean norm of a shortest vector.
\item NP-hard to solve exactly
\item Cryptography relies on approximate variants without such a reduction
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}
 \begin{scope}[scale=.6]
 \coordinate (Origin) at (0,0);
 \coordinate (XAxisMin) at (-5,0);
 \coordinate (XAxisMax) at (5,0);
 \coordinate (YAxisMin) at (0,-5);
 \coordinate (YAxisMax) at (0,5);
 \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
 \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
 \draw [thin, purple,->] (0,0) -- (-.5,.7);
 % \draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);

 \begin{scope}
 \clip (-5,-5) rectangle (5,5); % Clips the picture...
 \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

 % setup the nodes
 \foreach \x in {-15,...,15}
 \foreach \y in {-15,...,15}
 {
 \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
 }
 \end{scope}
 % our little node
 \node[shape=circle,fill=purple,scale=0.35] at (-.6,.8){};
 \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orga6032ba}]{Bounded Distance Decoding}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{definition}
Given a lattice basis \(\mat{B}\), a vector \(\vec{t}\), and a parameter \(0 < \alpha\) such that the Euclidean distance \textnormal{dist}\((\vec{t},\vec{B}) < \alpha \cdot \lambda_{1}(\Lambda(\vec{B}))\), find the lattice vector \(\vec{v} \in \Lambda(\vec{B})\) which is closest to \(\vec{t}\).
\end{definition}

\begin{itemize}
\item When \(\alpha < 1/2\) unique decoding is guaranteed but for \(\alpha < 1\) we typically still expect unique decoding.
\item BDD is a special case of the Closest Vector Problem where there is no bound on the distance to the lattice.
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}

 \begin{scope}[scale=.6,shift={(12,0)}]
 \coordinate (Origin) at (0,0);
 \coordinate (XAxisMin) at (-5,0);
 \coordinate (XAxisMax) at (5,0);
 \coordinate (YAxisMin) at (0,-5);
 \coordinate (YAxisMax) at (0,5);
 \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
 \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
 % \draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);

 \begin{scope}
 \clip (-5,-5) rectangle (5,5); % Clips the picture...
 \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

 % setup the nodes
 \foreach \x in {-15,...,15}
 \foreach \y in {-15,...,15}
 {
 \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
 }
 \end{scope}

 % our little node
 \node[shape=circle,fill=purple!60,scale=0.4] at (2.5,3.4){};
 \node[shape=circle,fill=purple,scale=0.4] at (2.1,3){};
 \node[shape=circle,fill=none,draw=purple,scale=0.8] at (2.1,3){};

 \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgbe0428d}]{LWE \textbf{is} Bounded Distance Decoding (BDD) on Random \(q\)-ary Lattices}
Let
\[
\mat{L} = \begin{pmatrix}
 q\mat{I} & \mat{A}\\
 0 & \mat{I}\\
 \end{pmatrix}
\]
We can reformulate the matrix form of the LWE equation \(\vec{A} \cdot \vec{s} + \vec{e} \equiv \vec{c} \bmod q\) as a linear system over the Integers as:
\[
 \mat{L} \cdot
 \begin{pmatrix}
 \vec{*}\\
 \vec{s}
 \end{pmatrix} +
 \begin{pmatrix}
 \vec{e}\\
 -\vec{s}
 \end{pmatrix}
 =
 \begin{pmatrix}
 q\mat{I} & -\mat{A}\\
 0 & \mat{I}\\
 \end{pmatrix} \cdot
 \begin{pmatrix}
 \vec{*}\\
 \vec{s}
 \end{pmatrix} +
 \begin{pmatrix}
 \vec{e}\\
 -\vec{s}
 \end{pmatrix}
=
 \begin{pmatrix}
 \vec{c}\\
 \vec{0}
 \end{pmatrix}
\]

The vector \((\vec{c}^T, \vec{0}^T)^T\) is close to the lattice \(\Lambda\left(\mat{L}\right)\) with offset \((\vec{e}^T, -\vec{s}^T)^T\).
\end{frame}
\begin{frame}[label={sec:orgbbee2c7}]{Is that a Good Choice?}
\begin{itemize}
\item Maybe BDD on random \(q\)-ary lattices is easier than BDD in general?
\item Maybe BDD is easier than SVP?
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgc9b00c7}]{Sketch: BDD on Random \(q\)-ary Lattices solves BDD on any Lattice}
\begin{itemize}
\item We are given some basis \(\mat{B} \in \ZZ^{d \times d}\) and some target \(\vec{t}\) s.t. \(\vec{t} = \mat{B}\cdot \vec{s} + \vec{e}\) with \(\vec{e}\) small
\item Pick some large \(q \geq 2^{2d}\)
\item Sample some \(\mat{U}\) (see below)
\item Set \(\mat{A} = \mat{U}\cdot \mat{B} \bmod q\) and consider \(\vec{c} = \mat{U} \cdot \vec{t} + \vec{e}'\) with \({\vec{e}'}\) small
\begin{align*}
\vec{c} &= \mat{U} \cdot \vec{t} + \vec{e}' = \mat{U} \cdot \left(\mat{B}\cdot \vec{s} + \vec{e} \right) + \vec{e}' = \mat{U} \cdot \mat{B}\cdot \vec{s} + \mat{U} \cdot \vec{e} + \vec{e}' = \mat{A} \cdot \vec{s} + \vec{e}''
\end{align*}
\item We can pick \(\mat{U}\)
\begin{itemize}
\item large enough to make \(\mat{A}\) uniform mod \(q\) and
\item small enough to make \(\mat{U} \cdot \vec{e} + \vec{e}'\) small and well distributed
\end{itemize}
using ``smoothing parameter'' arguments on \(\Lambda(\mat{B}^{-T})\)
\end{itemize}

\fullcite{Regev:2009:LLE}
\end{frame}
\begin{frame}[label={sec:org5f999f9}]{Sketch: Solving BDD on any Lattice implies solving GapSVP}
Say we want to decide if \(\lambda_{1}(\Lambda) \leq 1\) or \(\lambda_{1}(\Lambda) > \gamma\) and we have a BDD solver with \(\alpha = c\cdot \gamma\).

\begin{itemize}
\item Pick a random \(\vec{z} \in \Lambda\), add a small error \(\vec{e}\) of norm \(c\cdot \gamma\)
\item Run the BDD solver.
\item If it returns \(\vec{z}\) then output \(\lambda_{1}(\Lambda) > \gamma\), else output \(\lambda_{1}(\Lambda) \leq 1\).\footfullcite{STOC:Peikert09}

\item Regev showed: If you have a BDD solver you can find a short basis on a quantum computer \footfullcite{Regev:2009:LLE}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgb2909af},fragile]{Concrete Hardness: Cryptanalysis}
 \begin{itemize}
\item This tells us random \(q\)-ary lattices are not a terrible choice
\item To establish how long it actually takes to solve LWE, we rely on cryptanalysis

\begin{lstlisting}[language=Python,numbers=none]
from estimator import *
schemes.Kyber512
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
LWEParameters(n=512, q=3329, Xs=D(σ=1.22), Xe=D(σ=1.22), m=512, tag='Kyber 512')
\end{verbatim}

\begin{lstlisting}[language=Python,numbers=none]
LWE.primal_usvp(schemes.Kyber512)
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
rop: ≈2^143.8, red: ≈2^143.8, δ: 1.003941, β: 406, d: 998, tag: usvp
\end{verbatim}
\end{itemize}

\begin{center}
\url{https://github.com/malb/lattice-estimator/}
\end{center}
\end{frame}
\section{Algebraic Variants}
\label{sec:org5085a03}

\begin{frame}[label={sec:org51ea4f0}]{LWE}
\[
\begin{pmatrix}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{pmatrix} =
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} & a_{0,5} & a_{0,6} & a_{0,7}\\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7}\\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7}\\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7}\\
a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7}\\
a_{5,0} & a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7}\\
a_{6,0} & a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7}\\
a_{7,0} & a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7}\\
\end{pmatrix} \cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\begin{block}{Performance}
Storage: \(\mathcal{O}(n^{2})\); Computation \(\mathcal{O}(n^{2})\)
\end{block}
\end{frame}
\begin{frame}[label={sec:orgd274029}]{Ring-LWE/Polynomial-LWE}
\[
\begin{pmatrix}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{pmatrix} =
\begin{pmatrix}
\alert{a_{0}} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} & -a_{2} & -a_{1} \\
\alert{a_{1}} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} & -a_{2} \\
\alert{a_{2}} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} \\
\alert{a_{3}} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} \\
\alert{a_{4}} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} \\
\alert{a_{5}} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} \\
\alert{a_{6}} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} \\
\alert{a_{7}} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{pmatrix}\cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\end{frame}
\begin{frame}[label={sec:org26a1b6c}]{Ring-LWE/Polynomial-LWE}
\begin{align*}
\sum_{i=0}^{n-1} c_{i} \cdot X^{i} &= \left(\sum_{i=0}^{n-1} a_{i} \cdot X^{i}\right) \cdot \left(\sum_{i=0}^{n-1} s_{i} \cdot X^{i}\right) + \sum_{i=0}^{8} e_{i} \cdot X^{i} \bmod X^{n} +1\\
c(X) &= a(X) \cdot s(X) + e(X) \bmod \phi(X)
\end{align*}
\begin{block}{Performance (\(n\) is a power of two)}
Storage: \(\mathcal{O}(n)\); Computation \(\mathcal{O}(n \log n)\)
\end{block}
{\footnotesize \fullcite{AC:SSTX09,EC:LyuPeiReg10} \par}
\end{frame}
\begin{frame}[label={sec:org35c5e83}]{Module-LWE}
\[
\begin{pmatrix}c_{0,0} \\ c_{0,1} \\ c_{0,2} \\ c_{0,3} \\ c_{1,0} \\ c_{1,1} \\ c_{1,2} \\ c_{1,3}\end{pmatrix} =
\left(\begin{array}{rrrr|rrrr}
\alert{a_{0,0}} & -a_{0,3} & -a_{0,2} & -a_{0,1} & \alert{a_{1,0}} & -a_{1,3} & -a_{1,2} & -a_{1,1} \\
\alert{a_{0,1}} & a_{0,0} & -a_{0,3} & -a_{0,2} & \alert{a_{1,1}} & a_{1,0} & -a_{1,3} & -a_{1,2} \\
\alert{a_{0,2}} & a_{0,1} & a_{0,0} & -a_{0,3} & \alert{a_{1,2}} & a_{1,1} & a_{1,0} & -a_{1,3} \\
\alert{a_{0,3}} & a_{0,2} & a_{0,1} & a_{0,0} & \alert{a_{1,3}} & a_{1,2} & a_{1,1} & a_{1,0} \\
\hline
\alert{a_{2,0}} & -a_{2,3} & -a_{2,2} & -a_{2,1} & \alert{a_{3,0}} & -a_{3,3} & -a_{3,2} & -a_{3,1} \\
\alert{a_{2,1}} & a_{2,0} & -a_{2,3} & -a_{2,2} & \alert{a_{3,1}} & a_{3,0} & -a_{3,3} & -a_{3,2} \\
\alert{a_{2,2}} & a_{2,1} & a_{2,0} & -a_{2,3} & \alert{a_{3,2}} & a_{3,1} & a_{3,0} & -a_{3,3} \\
\alert{a_{2,3}} & a_{2,2} & a_{2,1} & a_{2,0} & \alert{a_{3,3}} & a_{3,2} & a_{3,1} & a_{3,0} \\
\end{array}\right)\cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\end{frame}
\begin{frame}[label={sec:orge6fd3d6}]{Module-LWE}
\[
\begin{pmatrix} c_{0}(X) \\ c_{1}(X) \end{pmatrix} =
\begin{pmatrix} a_{0}(X) & a_{1}(X) \\ a_{2}(X) & a_{3}(X) \end{pmatrix} \cdot
\begin{pmatrix} s_{0}(X) \\ s_{1}(X) \end{pmatrix} +
\begin{pmatrix} e_{0}(X) \\ e_{1}(X) \end{pmatrix}
\]
\begin{block}{Performance (\(n\) is a power of two)}
Storage: \(\mathcal{O}(k^{2} \cdot n)\); Computation \(\mathcal{O}(k^{2} \cdot n \log n)\)
\end{block}
{\footnotesize \fullcite{Langlois:2015:WCA} \par}
\end{frame}
\section{LWE Encryption}
\label{sec:org2d7b14a}
\begin{frame}[label={sec:orgadb07b7}]{Convention}
\begin{itemize}
\item I am going to use the Ring-LWE formulation \[c_{i}(X) = a_{i}(X)\cdot s(X) + e_{i}(X)\]
Thus, each sample corresponds to ``\(n\) LWE samples''
\item I will suppress the ``\((X)\)'' in ``\(a(X)\)'' etc.
\item I will assume \(s\) is ``small'' and that the product of two ``small'' things is ``small''.
\item I will write \(\alert{e_{i}}\) to emphasise that \(e_{i}\) is small.
\end{itemize}
\begin{block}{TL;DR: I will write}
\[c_{i} = a_{i}\cdot \alert{s} + \alert{e_{i}}\]
\end{block}
\end{frame}
\begin{frame}[label={sec:orga34f891}]{DH to Ring-LWE Dictionary}
\begin{center}
\begin{tabular}{ll}
\toprule
DH Land & Ring-LWE Land\\
\midrule
\(g\) & \(a\)\\
\(g^x\) & \(a\cdot {s} + \alert{e}\)\\
 & \\
\(g^x \cdot g^y = g^{x+y}\) & \((a\cdot {s} + \alert{e_0}) + (a \cdot {t} + \alert{e_1}) = a \cdot {(s+t)} + \alert{e'}\)\\
 & \\
\((g^a)^b = (g^b)^a\) & \((a\cdot \alert{s} + \alert{e})\cdot \alert{t} = (a\cdot \alert{s} \cdot \alert{t} + \alert{e} \cdot \alert{t})\)\\
 & \(\approx a\cdot \alert{s} \cdot \alert{t} \approx (a\cdot \alert{t} + \alert{e})\cdot \alert{s}\)\\
 & \\
\((g, g^a, g^b, g^{ab})\) & \((a,\ a\cdot \alert{s} + \alert{e},\ a\cdot \alert{t} + \alert{d},\ a \cdot \alert{s} \cdot \alert{t} + \alert{e'})\)\\
\(\approx_c (g, g^a, g^b, u)\) & \(\approx_c (a,\ a\cdot \alert{s} + \alert{e},\ a\cdot \alert{t} + \alert{d},\ u)\)\\
\bottomrule
\end{tabular}

\end{center}
\end{frame}
\begin{frame}[label={sec:org10701d8}]{Regev's Encryption Scheme}
You have already seen it.

\begin{description}
\item[{KeyGen}] Publish \(c_{i} = a_{i} \cdot s + \alert{e_{i}}\) for \(i=0,\ldots, \lceil 2\, n \log q\rceil\)
\item[{Encrypt}] \[d_{0} = \sum \alert{b_{i}} \cdot a_{i},\quad d_{1} = \left(\sum \alert{b_{i}} \cdot c_{i} \right) + \lfloor q/2 \rfloor \cdot m \textnormal{ with } \alert{b_{i}} \in \bin, m \in \bin^{n}\]
\item[{Decrypt}] \begin{align*}
\left\lfloor \frac{2}{q} \cdot \left(d_{1} - d_{0} \cdot s\right) \right\rceil &= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i}} \cdot c_{i} \right) + \left\lfloor \frac{q}{2} \right\rfloor \cdot m - \sum \alert{b_{i}} \cdot a_{i} \cdot s\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i}} \cdot (a_{i} \cdot s + \alert{e_{i}}) \right) + \frac{q}{2} \cdot m - \sum \alert{b_{i}} \cdot a_{i} \cdot s\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i} \cdot e_{i}} \right) + \left\lfloor \frac{q}{2} \right\rfloor \cdot m \right) \right\rceil = m
\end{align*}
\end{description}

The public key is indistinguishable from uniform by the LWE assumption and \(\sum b_{i} \cdot a_{i}\) is statistically close to uniformly random by the Leftover Hash Lemma (LHL).
\end{frame}
\begin{frame}[label={sec:orgea82128}]{ElGamal \& LPR10}
\textbf{ElGamal}

\begin{description}
\item[{KeyGen}] \(h = g^{x}\)
\item[{Encrypt}] \(d_{0},\ d_{1} = \left({g^{r},\ m \cdot h^{r}}\right)\) for some random \(r\)
\item[{Decrypt}] \(d_{1} / d_{0}^{x} = m \cdot (g^{x})^{r} / (g^{r})^{x} = m\)
\end{description}

\textbf{\cite{EC:LyuPeiReg10}}

\begin{description}
\item[{KeyGen}] \(c = a \cdot \alert{s} + \alert{e}\)
\item[{Encrypt}] \(d_{0}, \ d_{1} = \alert{v} \cdot a + \alert{e'},\ \alert{v} \cdot c + \alert{e''} +\left\lfloor \frac{q}{2} \right\rfloor \cdot m\)
\item[{Decrypt}] \begin{align*}
\left\lfloor \frac{2}{q} \cdot \left(d_{1} - d_{0} \cdot \alert{s}\right) \right\rceil &= \left\lfloor \frac{2}{q} \cdot \left({\alert{v} \cdot (a \cdot \alert{s} + \alert{e}) + \alert{e''} + \left\lfloor \frac{q}{2} \right\rfloor \cdot m - \left(\alert{v} \cdot a + \alert{e'}\right) \cdot \alert{s}}\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left({\alert{v} \cdot \alert{e} + \alert{e''} + \left\lfloor \frac{q}{2} \right\rfloor \cdot m - \alert{e'} \cdot \alert{s}}\right) \right\rceil = m\\
\end{align*}
\end{description}
\end{frame}
\begin{frame}[label={sec:org9a31368}]{Proof Sketch}
\begin{description}
\item[{KeyGen}] \(c = a \cdot \alert{s} + \alert{e}\)
\begin{itemize}
\item The public key \((a,c)\) is indistinguishable from uniform \((u', u'')\) by the (Ring-)LWE assumption
\end{itemize}

\item[{Encrypt}] \(d_{0}, \ d_{1} = \alert{v} \cdot a + \alert{e'},\ \alert{v} \cdot c + \alert{e''} + q/2 \cdot m\)
\begin{itemize}
\item Then \(\alert{v} \cdot u' + \alert{e''},\ \alert{v} \cdot u'' + \alert{e''}\) is indistinguishable from uniform by the (Ring)-LWE assumption
\end{itemize}
\end{description}
\end{frame}
\begin{frame}[allowframebreaks]{Reconciliation}
Once you have ElGamal, recovering Diffie-Hellman is straight forward.

\begin{description}
\item[{Common}] \(a\)
\item[{Alice}] \(c_{0} = \alert{s} \cdot a + \alert{e_{0}}\)
\item[{Bob}] \(c_{1} = a \cdot \alert{t} + \alert{e_{1}}\)
\item[{Shared}] \[c_{0} \cdot \alert{t} = (\alert{s} \cdot a + \alert{e_{0}})\cdot \alert{t} \approx \alert{s} \cdot a \cdot \alert{t} \approx \alert{s} \cdot (a \cdot \alert{t} + \alert{e_{1}}) = \alert{s} \cdot c_{1} \]
\end{description}

\framebreak

\[c_{0} \cdot \alert{t} = (\alert{s} \cdot a + \alert{e_{0}})\cdot \alert{t} \approx \alert{s} \cdot a \cdot \alert{t} \approx \alert{s} \cdot (a \cdot \alert{t} + \alert{e_{1}}) = \alert{s} \cdot c_{1} \]

\begin{itemize}
\item The problem with this construction is that ``\(\approx\)'' \(\neq\) ``\(=\)''
\item Need to send a ``hint'' how to round correctly (2nd most significant bit) \footfullcite{EPRINT:DinXieLin12}
\item Cannot have efficient Non-interactive Key Exchange (NIKE) without new ideas\footfullcite{JC:GKRS22}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orge9db21d}]{Practical Performance (Zen4)}
\begin{columns}[t]
\begin{column}{0.5\columnwidth}
\textbf{Curve25519}

\begin{center}
\begin{tabular}{lr}
\toprule
Key generation & \(\approx\) 100,000 cycles\\
Key agreement & \(\approx\) 110,000 cycles\\
 & \\
Public key & 32 bytes\\
Key Share & 32 bytes\\
\bottomrule
\end{tabular}

\end{center}

{\footnotesize \url{https://bench.cr.yp.to/results-dh.html} \par}
\end{column}
\begin{column}{0.5\columnwidth}
\textbf{Kyber-768}

\begin{center}
\begin{tabular}{lr}
\toprule
Key generation & \(\approx\) 30,000 cycles\\
Encapsulation & \(\approx\) 40,000 cycles\\
Decapsulation & \(\approx\) 32,000 cycles\\
Ciphertext & 1,088 bytes\\
Public key & 1,184 bytes\\
\bottomrule
\end{tabular}

\end{center}

{\footnotesize \url{https://bench.cr.yp.to/results-kem.html} \par}
\end{column}
\end{columns}
\begin{block}{Interpretation}
\begin{itemize}
\item An Ethernet frame takes 1,500 bytes
\item Your laptop does about \(2\cdot 10^{9}\) cycles per second
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[label={sec:orgf4e0799},standout]{Fin}
\begin{center}
\Large \alert{… noisy linear algebra mod \(q\)}
\end{center}

\IfFileExists{\jobname.tex}{\embedfile[afrelationship={/Source}]{\jobname.tex}}{}
\end{frame}
\begin{frame}[allowframebreaks]{References}
\printbibliography[heading=none]
\end{frame}
\end{document}

