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Learning with Errors



Main reference

Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In: Journal of the ACM 56.6 (Sept.
2009), 34:1–34:40. issn: 0004-5411 (print), 1557-735X (electronic).
doi: http://doi.acm.org/10.1145/1568318.1568324

https://doi.org/http://doi.acm.org/10.1145/1568318.1568324


TL;DR: The Internet will run on this stuff



“Small Elements” mod q

• We can represent Zq with integers {0, 1, . . . ,q− 1}
• We can also represent Zq with integers {−bq/2c,−bq/2c+ 1, . . . , bq/2c}
• Example:

q = 17

K = GF(q)

[[e.lift() for e in K], [e.lift_centered() for e in K]]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1

• The latter representation is called “centred” or “balanced”.
• We often implicitly assume the “centred” representation.
• We informally say that e ∈ Zq is “small” if its balanced representation is small in
absolute value.



1-dim LWE (even easier than RSA)

KeyGen
• Pick a prime q ≈ 210,000

• Pick a random integer s ∈ Zq
• Pick about t = 20, 000 random
ai ∈ Zq and small ei ≈ 29,850

• Publish pairs
ai, ci = ai · s+ ei mod Zq

Encrypt m ∈ {0, 1}
• Pick bi ∈ {0, 1}
• d0 =

∑t−1
i=0 bi · ai

• d1 = b q2 c ·m+
∑t−1

i=0 bi · ci
• Return d0,d1

Decrypt
• Compute d = d1 − d0 · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · ci −
t−1∑
i=0

bi · ai · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · (ai · s+ ei)−
t−1∑
i=0

bi · ai · s

=
⌊q
2

⌋
·m+

t−1∑
i=0

bi · ei

• Return 1 if |d| > q/4 and 0 otherwise.



Toy Implementation

t = 10000

q = next_prime(2^10000, proof=False); q2 = q//2

# KeyGen

s = ZZ.random_element(0, q, "uniform")

a_ = [ZZ.random_element(0, q, "uniform") for _ in range(t)]

e_ = [ZZ.random_element(y=2^9850) for _ in range(t)]

c_ = [(a_[i]*s + e_[i]) % q for i in range(t)]

# Enc

m = 1

b_ = [ZZ.random_element(x=0,y=2) for _ in range(t)]

d0 = sum(b_[i]*a_[i] for i in range(t)) % q

d1 = (q2 * m + sum(b_[i]*c_[i] for i in range(t))) % q

# Dec

round(((d1 - d0*s) % q)/q2), m

(1, 1)



The Learning with Errors Problem (LWE)

Given (A, c) with c ∈ Zmq , A ∈ Zm×n
q , s ∈ Znq and small e ∈ Zm is


c


=



← n →

A


×

 s

+


e


or c←$ U

(
Zmq
)
.



The Learning with Errors Problem (LWE)

Definition (LWE)
Let n, q be positive integers, χ be a probability distribution on Z and s be a uniformly
random vector in Znq. We denote by Ls,χ the probability distribution on Znq × Zq
obtained by choosing a ∈ Znq uniformly at random, choosing e ∈ Z according to χ and
considering it in Zq, and returning (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are sampled
according to Ls,χ or the uniform distribution on Znq × Zq.

Search-LWE is the problem of recovering s from pairs (a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq
sampled according to Ls,χ.



A Fair Warning: Gaussian Distributions

• In this lecture I am ignoring the specifics of the distribution χ. That is, the only slide
with the phrase “Discrete Gaussian distribution” is this slide.

• In practice, for encryption the shape of the error does not seem to matter much.
• Ignoring the distribution allows to brutally simply proof sketches: almost all
technical difficulty in these proofs derives from arguing about two distributions
being close.



Normal Form LWE

Consider
• Ai ∈ Zn×nq , s ∈ Znq, ei ←$ χn,
• c0 = A0 · s+ e0 and
• c1 = A1 · s+ e1
• We have with high probability

c′ = c1 − A1 · A−10 · c0
= A1 · s+ e1 − A1 · A−10 (A0 · s+ e0)
= A1 · s+ e1 − A1 · s− A1 · A−10 · e0
= −A1 · A−10 · e0 + e1
= A′ · e0 + e1

• We might as well assume that our
secret is also sampled from χ.

• Benny Applebaum, David Cash,
Chris Peikert, and Amit Sahai. Fast
Cryptographic Primitives and
Circular-Secure Encryption Based on
Hard Learning Problems. In:
CRYPTO 2009. Ed. by Shai Halevi.
Vol. 5677. LNCS. Springer, Berlin,
Heidelberg, Aug. 2009, pp. 595–618. doi:
10.1007/978-3-642-03356-8_35

https://doi.org/10.1007/978-3-642-03356-8_35


Dimension/Modulus Trade-Off

Consider a, s ∈ Zdq where s is small, then

qd−1 · 〈a, s〉 ≈
(d−1∑

i=0

qi · ai

)
·

(d−1∑
i=0

qd−i−1 · si

)
mod qd = ã · s̃ mod qd.

If there is an efficient algorithm solving the problem in Zqd , we can solve the problem in
Zdq.

Example (Zq2 )

q · (a0 · s0 + a1 · s1) + a0 · s1 + q2 · a1 · s0 mod q = (a0 + q · a1) · (q · s0 + s1)

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In: 45th ACM STOC. ed. by Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum. ACM Press, June 2013, pp. 575–584. doi: 10.1145/2488608.2488680

https://doi.org/10.1145/2488608.2488680


LWE and Lattices



Lattices

• A lattice is a discrete subgroup of Rd

• It can be written as

Λ =

{d−1∑
i=0

vi · bi | vi ∈ Z

}

for some basis vectors bi.
• We write Λ(B) for the lattices spanned
by the columns of B.

• A lattice is q-ary if it contains qZd, e.g.
{x ∈ Zd | x · A ≡ 0} for some A ∈ Zd×d′ .

Picture credit: David Wong



Shortest Vector Problem

Definition
Given a lattice basis B, find a shortest
non-zero vector in Λ(B).

• The most natural problem on lattices
• We write λ1(Λ) for the Euclidean norm
of a shortest vector.

• NP-hard to solve exactly
• Cryptography relies on approximate
variants without such a reduction

Picture credit: David Wong



Bounded Distance Decoding

Definition
Given a lattice basis B, a vector t, and a
parameter 0 < α such that the Euclidean
distance dist(t,B) < α · λ1(Λ(B)), find the
lattice vector v ∈ Λ(B) which is closest to t.

• When α < 1/2 unique decoding is
guaranteed but for α < 1 we typically
still expect unique decoding.

• BDD is a special case of the Closest
Vector Problem where there is no bound
on the distance to the lattice.

Picture credit: David Wong



LWE is Bounded Distance Decoding (BDD) on Random q-ary Lattices

Let

L =
(
qI A
0 I

)
We can reformulate the matrix form of the LWE equation A · s+ e ≡ c mod q as a linear
system over the Integers as:

L ·
(
∗
s

)
+

(
e
−s

)
=

(
qI −A
0 I

)
·

(
∗
s

)
+

(
e
−s

)
=

(
c
0

)

The vector (cT ,0T)T is close to the lattice Λ (L) with offset (eT ,−sT)T .



Is that a Good Choice?

• Maybe BDD on random q-ary lattices is easier than BDD in general?
• Maybe BDD is easier than SVP?



Sketch: BDD on Random q-ary Lattices solves BDD on any Lattice

• We are given some basis B ∈ Zd×d and some target t s.t. t = B · s+ e with e small
• Pick some large q ≥ 22d

• Sample some U (see below)
• Set A = U · B mod q and consider c = U · t+ e′ with e′ small

c = U · t+ e′ = U · (B · s+ e) + e′ = U · B · s+ U · e+ e′ = A · s+ e′′

• We can pick U
• large enough to make A uniform mod q and
• small enough to make U · e+ e′ small and well distributed

using “smoothing parameter” arguments on Λ(B−T)

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In:
Journal of the ACM 56.6 (Sept. 2009), 34:1–34:40. issn: 0004-5411 (print), 1557-735X
(electronic). doi: http://doi.acm.org/10.1145/1568318.1568324

https://doi.org/http://doi.acm.org/10.1145/1568318.1568324


Sketch: Solving BDD on any Lattice implies solving GapSVP

Say we want to decide if λ1(Λ) ≤ 1 or λ1(Λ) > γ and we have a BDD solver with α = c · γ.

• Pick a random z ∈ Λ, add a small error e of norm c · γ
• Run the BDD solver.
• If it returns z then output λ1(Λ) > γ, else output λ1(Λ) ≤ 1.1

• Regev showed: If you have a BDD solver you can find a short basis on a quantum
computer2

1Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: 41st ACM STOC.
ed. by Michael Mitzenmacher. ACM Press, 2009, pp. 333–342. doi: 10.1145/1536414.1536461.
2Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In: Journal of the ACM 56.6 (Sept. 2009),
34:1–34:40. issn: 0004-5411 (print), 1557-735X (electronic). doi: http://doi.acm.org/10.1145/1568318.1568324.

https://doi.org/10.1145/1536414.1536461
https://doi.org/http://doi.acm.org/10.1145/1568318.1568324


Concrete Hardness: Cryptanalysis

• This tells us random q-ary lattices are not a terrible choice
• To establish how long it actually takes to solve LWE, we rely on cryptanalysis

from estimator import *

schemes.Kyber512

LWEParameters(n=512, q=3329, Xs=D(σ=1.22), Xe=D(σ=1.22), m=512, tag='Kyber 512')

LWE.primal_usvp(schemes.Kyber512)

rop: ≈2^143.8, red: ≈2^143.8, δ: 1.003941, β: 406, d: 998, tag: usvp

https://github.com/malb/lattice-estimator/

https://github.com/malb/lattice-estimator/


Algebraic Variants



LWE



c0
c1
c2
c3
c4
c5
c6
c7


=



a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7
a4,0 a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7
a5,0 a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7
a6,0 a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7
a7,0 a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7


Performance
Storage: O(n2); Computation O(n2)



Ring-LWE/Polynomial-LWE



c0
c1
c2
c3
c4
c5
c6
c7


=



a0 −a7 −a6 −a5 −a4 −a3 −a2 −a1
a1 a0 −a7 −a6 −a5 −a4 −a3 −a2
a2 a1 a0 −a7 −a6 −a5 −a4 −a3
a3 a2 a1 a0 −a7 −a6 −a5 −a4
a4 a3 a2 a1 a0 −a7 −a6 −a5
a5 a4 a3 a2 a1 a0 −a7 −a6
a6 a5 a4 a3 a2 a1 a0 −a7
a7 a6 a5 a4 a3 a2 a1 a0


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7





Ring-LWE/Polynomial-LWE

n−1∑
i=0

ci · Xi =
(n−1∑

i=0

ai · Xi
)
·

(n−1∑
i=0

si · Xi
)

+
8∑
i=0

ei · Xi mod Xn + 1

c(X) = a(X) · s(X) + e(X) mod φ(X)

Performance (n is a power of two)
Storage: O(n); Computation O(n log n)

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient Public Key Encryption Based on Ideal
Lattices. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 617–635. doi: 10.1007/978-3-642-10366-7_36; Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On
Ideal Lattices and Learning with Errors over Rings. In: EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS.
Springer, Berlin, Heidelberg, 2010, pp. 1–23. doi: 10.1007/978-3-642-13190-5_1

https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-13190-5_1


Module-LWE



c0,0
c0,1
c0,2
c0,3
c1,0
c1,1
c1,2
c1,3


=



a0,0 −a0,3 −a0,2 −a0,1 a1,0 −a1,3 −a1,2 −a1,1
a0,1 a0,0 −a0,3 −a0,2 a1,1 a1,0 −a1,3 −a1,2
a0,2 a0,1 a0,0 −a0,3 a1,2 a1,1 a1,0 −a1,3
a0,3 a0,2 a0,1 a0,0 a1,3 a1,2 a1,1 a1,0
a2,0 −a2,3 −a2,2 −a2,1 a3,0 −a3,3 −a3,2 −a3,1
a2,1 a2,0 −a2,3 −a2,2 a3,1 a3,0 −a3,3 −a3,2
a2,2 a2,1 a2,0 −a2,3 a3,2 a3,1 a3,0 −a3,3
a2,3 a2,2 a2,1 a2,0 a3,3 a3,2 a3,1 a3,0


·



s0
s1
s2
s3
s4
s5
s6
s7


+



e0
e1
e2
e3
e4
e5
e6
e7





Module-LWE

(
c0(X)
c1(X)

)
=

(
a0(X) a1(X)
a2(X) a3(X)

)
·

(
s0(X)
s1(X)

)
+

(
e0(X)
e1(X)

)

Performance (n is a power of two)
Storage: O(k2 · n); Computation O(k2 · n log n)

Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. In: Designs,
Codes, and Cryptography 75.3 (June 2015), pp. 565–599. issn: 0925-1022 (print), 1573-7586 (electronic). doi:
http://dx.doi.org/10.1007/s10623-014-9938-4. url:
http://link.springer.com/article/10.1007/s10623-014-9938-4

https://doi.org/http://dx.doi.org/10.1007/s10623-014-9938-4
http://link.springer.com/article/10.1007/s10623-014-9938-4


LWE Encryption



Convention

• I am going to use the Ring-LWE formulation

ci(X) = ai(X) · s(X) + ei(X)

Thus, each sample corresponds to “n LWE samples”
• I will suppress the “(X)” in “a(X)” etc.
• I will assume s is “small” and that the product of two “small” things is “small”.
• I will write ei to emphasise that ei is small.

TL;DR: I will write

ci = ai · s+ ei



DH to Ring-LWE Dictionary

DH Land Ring-LWE Land

g a
gx a · s+ e

gx · gy = gx+y (a · s+ e0) + (a · t + e1) = a · (s+ t) + e′

(ga)b = (gb)a (a · s+ e) · t = (a · s · t + e · t)
≈ a · s · t ≈ (a · t + e) · s

(g,ga,gb,gab) (a, a · s+ e, a · t + d, a · s · t + e′)
≈c (g,ga,gb,u) ≈c (a, a · s+ e, a · t + d, u)



Regev’s Encryption Scheme

You have already seen it.

KeyGen Publish ci = ai · s+ ei for i = 0, . . . , d2n log qe
Encrypt

d0 =
∑

bi · ai, d1 =
(∑

bi · ci
)
+ bq/2c ·m with bi ∈ {0, 1},m ∈ {0, 1}n

Decrypt ⌊
2
q
· (d1 − d0 · s)

⌉
=

⌊
2
q
·
((∑

bi · ci
)
+
⌊q
2

⌋
·m−

∑
bi · ai · s

)⌉
=

⌊
2
q
·
((∑

bi · (ai · s+ ei)
)
+
q
2
·m−

∑
bi · ai · s

)⌉
=

⌊
2
q
·
((∑

bi · ei
)
+
⌊q
2

⌋
·m
)⌉

= m

The public key is indistinguishable from uniform by the LWE assumption and
∑
bi · ai is

statistically close to uniformly random by the Leftover Hash Lemma (LHL).



ElGamal & LPR10

ElGamal

KeyGen h = gx

Encrypt d0, d1 = (gr, m · hr) for some random r
Decrypt d1/dx0 = m · (gx)r/(gr)x = m

[LPR10]

KeyGen c = a · s+ e
Encrypt d0, d1 = v · a+ e′, v · c + e′′ +

⌊ q
2
⌋
·m

Decrypt ⌊
2
q
· (d1 − d0 · s)

⌉
=

⌊
2
q
·
(
v · (a · s+ e) + e′′ +

⌊q
2

⌋
·m− (v · a+ e′) · s

)⌉
=

⌊
2
q
·
(
v · e+ e′′ +

⌊q
2

⌋
·m− e′ · s

)⌉
= m



Proof Sketch

KeyGen c = a · s+ e
• The public key (a, c) is indistinguishable from uniform (u′,u′′) by the
(Ring-)LWE assumption

Encrypt d0, d1 = v · a+ e′, v · c + e′′ + q/2 ·m
• Then v · u′ + e′′, v · u′′ + e′′ is indistinguishable from uniform by the
(Ring)-LWE assumption



Reconciliation i

Once you have ElGamal, recovering Diffie-Hellman is straight forward.

Common a

Alice c0 = s · a+ e0
Bob c1 = a · t + e1

Shared
c0 · t = (s · a+ e0) · t ≈ s · a · t ≈ s · (a · t + e1) = s · c1



Reconciliation ii

c0 · t = (s · a+ e0) · t ≈ s · a · t ≈ s · (a · t + e1) = s · c1

• The problem with this construction is that “≈” 6= “=”

• Need to send a “hint” how to round correctly (2nd most significant bit)3

• Cannot have efficient Non-interactive Key Exchange (NIKE) without new ideas4

3Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors
Problem. Cryptology ePrint Archive, Report 2012/688. 2012. url: https://eprint.iacr.org/2012/688.
4Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the Efficiency of (Ring) LWE-Based Non-interactive Key
Exchange. In: Journal of Cryptology 35.1 (Jan. 2022), p. 1. doi: 10.1007/s00145-021-09406-y.

https://eprint.iacr.org/2012/688
https://doi.org/10.1007/s00145-021-09406-y


Practical Performance (Zen4)

Curve25519

Key generation ≈ 100,000 cycles
Key agreement ≈ 110,000 cycles

Public key 32 bytes
Key Share 32 bytes

https://bench.cr.yp.to/results-dh.html

Kyber-768

Key generation ≈ 30,000 cycles
Encapsulation ≈ 40,000 cycles
Decapsulation ≈ 32,000 cycles
Ciphertext 1,088 bytes
Public key 1,184 bytes

https://bench.cr.yp.to/results-kem.html

Interpretation

• An Ethernet frame takes 1,500 bytes
• Your laptop does about 2 · 109 cycles per second

https://bench.cr.yp.to/results-dh.html
https://bench.cr.yp.to/results-kem.html


Fin

… noisy linear algebra mod q



References i

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
Cryptographic Primitives and Circular-Secure Encryption Based on Hard
Learning Problems. In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS.
Springer, Berlin, Heidelberg, Aug. 2009, pp. 595–618. doi:
10.1007/978-3-642-03356-8_35.

[BLPRS13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In: 45th ACM STOC.
Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June
2013, pp. 575–584. doi: 10.1145/2488608.2488680.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A Simple Provably Secure Key
Exchange Scheme Based on the Learning with Errors Problem. Cryptology
ePrint Archive, Report 2012/688. 2012. url:
https://eprint.iacr.org/2012/688.

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1145/2488608.2488680
https://eprint.iacr.org/2012/688


References ii

[GKRS22] Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki. Limits on the
Efficiency of (Ring) LWE-Based Non-interactive Key Exchange. In: Journal of
Cryptology 35.1 (Jan. 2022), p. 1. doi: 10.1007/s00145-021-09406-y.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and
Learning with Errors over Rings. In: EUROCRYPT 2010. Ed. by Henri Gilbert.
Vol. 6110. LNCS. Springer, Berlin, Heidelberg, 2010, pp. 1–23. doi:
10.1007/978-3-642-13190-5_1.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. In: Designs, Codes, and Cryptography 75.3 (June 2015),
pp. 565–599. issn: 0925-1022 (print), 1573-7586 (electronic). doi:
http://dx.doi.org/10.1007/s10623-014-9938-4. url:
http://link.springer.com/article/10.1007/s10623-014-9938-4.

https://doi.org/10.1007/s00145-021-09406-y
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/http://dx.doi.org/10.1007/s10623-014-9938-4
http://link.springer.com/article/10.1007/s10623-014-9938-4


References iii

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: 41st ACM STOC. Ed. by Michael Mitzenmacher.
ACM Press, 2009, pp. 333–342. doi: 10.1145/1536414.1536461.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In: Journal of the ACM 56.6 (Sept. 2009), 34:1–34:40. issn:
0004-5411 (print), 1557-735X (electronic). doi:
http://doi.acm.org/10.1145/1568318.1568324.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
Public Key Encryption Based on Ideal Lattices. In: ASIACRYPT 2009. Ed. by
Mitsuru Matsui. Vol. 5912. LNCS. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 617–635. doi: 10.1007/978-3-642-10366-7_36.

https://doi.org/10.1145/1536414.1536461
https://doi.org/http://doi.acm.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-642-10366-7_36

	Learning with Errors
	LWE and Lattices
	Algebraic Variants
	LWE Encryption


% Intended LaTeX compiler: lualatex
\documentclass[xcolor=table,10pt,aspectratio=169]{beamer}

\RequirePackage[l2tabu,orthodox]{nag}            %% Warn about obsolete commands and packages
\RequirePackage{amsmath,amsfonts,amssymb,amsthm} %% Math
\RequirePackage{ifpdf,ifxetex,ifluatex}          %% Detect XeTeX and LuaTeX
\RequirePackage{xspace}
\RequirePackage{graphicx}
\RequirePackage{comment}
\RequirePackage{url}
\RequirePackage{relsize}
\RequirePackage{booktabs}
\RequirePackage{tabularx}
\RequirePackage[normalem]{ulem}
\ifluatex%
\else%
  \RequirePackage[all]{xy}
\fi%
\RequirePackage{etoolbox}
\RequirePackage{csquotes}
\RequirePackage[export]{adjustbox}

\RequirePackage{silence}
\WarningsOff[microtype]
\WarningFilter{microtype}{Unknown slot}

% https://tex.stackexchange.com/questions/64459/overfull-vbox-warning-disable
\vfuzz=30pt
\hfuzz=30pt


%%%
%%% Code Listings
%%%

\RequirePackage{listings}
\lstdefinelanguage{Sage}[]{Python}{morekeywords={True,False,sage,cdef,cpdef,ctypedef,self},sensitive=true}
\lstdefinelanguage{jupyter-python}[]{Python}{morekeywords={True,False,self},sensitive=true}

\lstset{frame=none,
  showtabs=False,
  showspaces=False,
  showstringspaces=False,
  commentstyle={\color{gray}},
  keywordstyle={\color{mLightBrown}\textbf},
  stringstyle ={\color{mDarkBrown}},
  frame=single,
  basicstyle=\tt\scriptsize\relax,
  backgroundcolor=\color{gray!190!black},
  inputencoding=utf8,
  literate={…}{{\ldots}}1,
  belowskip=0.0em,
}

\makeatletter
\patchcmd{\@verbatim}
  {\verbatim@font}
  {\verbatim@font\scriptsize}
  {}{}
\makeatother


%%%
%%% Pseudocode
%%%

\let\nl\undefine
\let\procedure\relax
\let\endprocedure\relax
\usepackage{algorithm2e}

%%%
%%% Tikz
%%%

\RequirePackage{tikz,pgfplots}
\pgfplotsset{compat=newest}

\usetikzlibrary{calc}
\usetikzlibrary{arrows}
\usetikzlibrary{automata}
\usetikzlibrary{positioning}
\usetikzlibrary{decorations.pathmorphing}
\usetikzlibrary{backgrounds}
\usetikzlibrary{fit,}
\usetikzlibrary{shapes.symbols}
\usetikzlibrary{chains}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{shapes.arrows}
\usetikzlibrary{graphs}

%% Cache but disable by default

\usetikzlibrary{external}
\tikzset{external/export=false}

\definecolor{DarkPurple}{HTML}{332288}
\definecolor{DarkBlue}{HTML}{6699CC}
\definecolor{LightBlue}{HTML}{88CCEE}
\definecolor{DarkGreen}{HTML}{117733}
\definecolor{DarkRed}{HTML}{661100}
\definecolor{LightRed}{HTML}{CC6677}
\definecolor{LightPink}{HTML}{AA4466}
\definecolor{DarkPink}{HTML}{882255}
\definecolor{LightPurple}{HTML}{AA4499}
\definecolor{DarkBrown}{HTML}{604c38}
\definecolor{DarkTeal}{HTML}{23373b}
\definecolor{LightBrown}{HTML}{EB811B}
\definecolor{LightGreen}{HTML}{14B03D}
\definecolor{DarkOrange}{HTML}{FFDD00}

\pgfplotsset{width=1.0\textwidth,
  height=0.6\textwidth,
  cycle list={%
    solid,LightGreen,thick\\%
    dotted,LightRed,very thick\\%
    dashed,DarkBlue,thick\\%
    dashdotted,DarkPink,thick\\%
    dashdotdotted,LightGreen,thick\\%
    loosely dotted,very thick\\%
    loosely dashed,DarkBlue,very thick\\%
    loosely dashdotted,DarkPink,very thick\\%
    \\%
    DarkBrown,thick\\%
  },
  legend pos=north west,
  legend cell align={left}}

\pgfplotsset{select coords between index/.style 2 args={
    x filter/.code={
        \ifnum\coordindex<#1\def\pgfmathresult{}\fi
        \ifnum\coordindex>#2\def\pgfmathresult{}\fi
    }
}}

\setlength{\marginparwidth}{2cm}
\pgfplotsset{compat=1.18}

%%%
%%% SVG (Inkscape)
%%%

\ifpdf% 
\providecommand{\executeiffilenewer}[3]{%
  \ifnum\pdfstrcmp{\pdffilemoddate{#1}}%
    {\pdffilemoddate{#2}}>0%
    {\immediate\write18{#3}}
  \fi%
}
\else%
\providecommand{\executeiffilenewer}[3]{%
  {\immediate\write18{#3}} % hack
}
\fi%

\providecommand{\includesvg}[2][1.0\textwidth]{%
 \executeiffilenewer{#1.svg}{#1.pdf}%
 {inkscape -z -D --file=#2.svg --export-pdf=#2.pdf --export-latex --export-area-page}%
 \def\svgwidth{#1} 
 \input{#2.pdf_tex}%
} 

%%%
%%% Attachments
%%%

\RequirePackage{embedfile}


%%%
%%% Metropolis Theme
%%%

\usetheme{metropolis}
\metroset{color/block=fill}
\metroset{numbering=none}
\metroset{outer/progressbar=foot}
\metroset{titleformat=smallcaps}

\setbeamercolor{description item}{fg=mLightBrown}
\setbeamerfont{footnote}{size=\scriptsize}
\setbeamercolor{example text}{fg=mDarkBrown}
\setbeamercolor{block title alerted}{fg=white, bg=mDarkBrown}
\setbeamerfont{alerted text}{series=\ifmmode\boldmath\else\bfseries\fi}

\definecolor{gamechangecolor}{HTML}{f8e8c6}

\renewcommand*{\UrlFont}{\ttfamily\relax}

%%%
%%% UTF-8 & Fonts
%%% 

% \RequirePackage{unicodesymbols} % after metropolis which loads fontspec

\ifboolexpr{bool{xetex} or bool{luatex}}{%
\setmonofont[BoldFont={Cousine Bold},
             ItalicFont={Cousine Italic},
             BoldItalicFont={Cousine Bold Italic},
             Scale=0.9]{Cousine}             
}{%
}

%%%
%%% BibLaTeX
%%%

\RequirePackage[backend=bibtex,
            style=alphabetic,
            maxnames=8,maxbibnames=8,maxalphanames=8,
            citestyle=alphabetic]{biblatex}

\bibliography{local.bib,abbrev3.bib,crypto_crossref.bib,rfc.bib,jacm.bib,dcc.bib}

\setbeamertemplate{bibliography item}[text]
% https://tex.stackexchange.com/questions/683533/beamer-theme-metropolis-does-not-allow-different-font-size-for-fullcite
\setbeamerfont{bibliography entry title}{size=}
\setbeamerfont{bibliography entry author}{size=}
\setbeamerfont{bibliography entry location}{size=}
\setbeamerfont{bibliography entry note}{size=}

\DeclareFieldFormat{title}{\alert{#1}}
\DeclareFieldFormat[book]{title}{\alert{#1}}
\DeclareFieldFormat[thesis]{title}{\alert{#1}}
\DeclareFieldFormat[inproceedings]{title}{\alert{#1}}
\DeclareFieldFormat[incollection]{title}{\alert{#1}}
\DeclareFieldFormat[article]{title}{\alert{#1}}
\DeclareFieldFormat[misc]{title}{\alert{#1}}

%%% 
%%% Microtype
%%%

\IfFileExists{upquote.sty}{\RequirePackage{upquote}}{}
%% https://github.com/schlcht/microtype/issues/43
%% \IfFileExists{microtype.sty}{\RequirePackage{microtype}}{}
%% \IfFileExists{microtype.sty}{\PassOptionsToPackage{verbose=silent}{microtype}}{}

\setlength{\parindent}{0pt}                   %%
\setlength{\parskip}{6pt plus 2pt minus 1pt}  %%
\setlength{\emergencystretch}{3em}            %% prevent overfull lines
\setcounter{secnumdepth}{0}                   %%

%%%
%%% Maths
%%%

\DeclareMathOperator{\Vol}{Vol}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\GH}{GH}
\renewcommand{\vec}[1]{\ensuremath{\mathbf{#1}}\xspace}
\newcommand{\norm}[1]{\left\lVert#1\right\rVert}
\providecommand{\mat}[1]{\ensuremath{\vec{#1}}\xspace}
\providecommand{\ring}[0]{\ensuremath{\mathcal{R}}\xspace}


\usepackage{amsmath}
\usepackage{fontspec}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{booktabs}
\usepackage{newunicodechar}
\usepackage[notions,operators,sets,keys,ff,adversary,primitives,complexity,asymptotics,lambda,landau,advantage]{cryptocode}
\usepackage[capitalize]{cleveref}
\usepackage[,]{stmaryrd}
\usepackage[english]{babel}
\usepackage{xspace}
\usepackage{units}
\usepackage{nicefrac}
\usepackage{gensymb}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{xcolor}
\usepackage{listings}
\usepackage[color=cyan!0!magenta!4!yellow!16]{todonotes}
\PassOptionsToPackage{british}{babel}
\setbeamerfont{alerted text}{series=\ifmmode\boldmath\else\bfseries\fi}
\definecolor{gamechangecolor}{HTML}{f8e8c6}
\definecolor{BrightOrange}{HTML}{f8e8c6}
\tikzexternalize[prefix=tikz-figures/]
\newcommand{\Ldis}{\ensuremath{\mathcal{L}_{\mathbf{s},\chi}}\xspace}
\newcommand{\rhf}{{\ensuremath{\sqrt{\alpha_{\beta}}}\xspace}}
\usetheme{default}
\author{Martin R. Albrecht}
\date{}
\title{The Learning with Errors Problem}
\subtitle{Advanced Topics in \texorpdfstring{\sout{Cybersecurity}Cryptography}{Cryptography} (7CCSMATC)}
\hypersetup{
pdfauthor={Martin R. Albrecht},
pdftitle={The Learning with Errors Problem},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 30.2 (Org mode 9.7.34)},
pdflang={English},
colorlinks,
citecolor=gray,
filecolor=gray,
linkcolor=gray,
urlcolor=gray
}
\usepackage[backend=bibtex]{biblatex}
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\maketitle
\begin{frame}{Outline}
\tableofcontents
\end{frame}

\section{Learning with Errors}
\label{sec:org169a595}

\begin{frame}[label={sec:orgecbb11a}]{Main reference}
\begin{columns}
\begin{column}{0.3\columnwidth}
\begin{center}
\includegraphics[width=.9\linewidth]{./lecture-lwe-regev.jpg}
\end{center}
\end{column}
\begin{column}{0.7\columnwidth}
\fullcite{Regev:2009:LLE}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org9647699}]{TL;DR: The Internet will run on this stuff}
\begin{center}
\includegraphics[keepaspectratio,height=.9\textheight]{./lecture-lwe-nist.png}
\end{center}
\end{frame}
\begin{frame}[label={sec:orgd9f5d6d},fragile]{``Small Elements'' mod \(q\)}
 \begin{itemize}
\item We can represent \(\ZZ_{q}\) with integers \(\{0, 1, \ldots, q-1\}\)
\item We can also represent \(\ZZ_{q}\) with integers \(\{-\lfloor q/2 \rfloor, -\lfloor q/2 \rfloor +1, \ldots, \lfloor q/2 \rfloor\}\)
\item Example:
\begin{lstlisting}[language=Python,numbers=none]
q = 17
K = GF(q)
[[e.lift() for e in K], [e.lift_centered() for e in K]]
\end{lstlisting}

\begin{table}[htbp]
\centering
\begin{tabular}{rrrrrrrrrrrrrrrrr}
\toprule
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16\\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1\\
\bottomrule
\end{tabular}
\label{}

\end{table}

\item The latter representation is called ``centred'' or ``balanced''.
\item We often implicitly assume the ``centred'' representation.
\item We informally say that \(e \in \ZZ_{q}\) is ``small'' if its balanced representation is small in absolute value.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgd572b42}]{1-dim LWE (even easier than RSA)}
\begin{columns}[t]
\begin{column}{0.4\columnwidth}
\alert{KeyGen}

\begin{itemize}
\item Pick a prime \(q \approx 2^{10,000}\)
\item Pick a random integer \(s \in \ZZ_q\)
\item Pick about \(t=20,000\) random \(a_i \in \ZZ_q\) and small \(e_i \approx 2^{9,850}\)
\item Publish pairs \(a_i, c_i = a_i \cdot s + e_i \bmod \ZZ_q\)
\end{itemize}

\alert{Encrypt}  \(m \in \{0,1\}\)

\begin{itemize}
\item Pick \(b_i \in \{0,1\}\)
\item \(d_0 = \sum_{i=0}^{t-1} b_i \cdot a_i\)
\item \(d_1 = \lfloor \frac{q}{2} \rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot c_i\)
\item Return \(d_0, d_1\)
\end{itemize}
\end{column}
\begin{column}{0.6\columnwidth}
\alert{Decrypt}

\begin{itemize}
\item Compute \(d = d_1 - d_0 \cdot s\)
\end{itemize}
\begin{align*}
  &=  \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot c_i - \sum_{i=0}^{t-1} b_i \cdot a_i \cdot s\\
  &=  \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot (a_i \cdot s + e_i) - \sum_{i=0}^{t-1} b_i \cdot a_i \cdot s\\
  &=  \left\lfloor \frac{q}{2} \right\rfloor \cdot m + \sum_{i=0}^{t-1} b_i \cdot  e_i 
\end{align*}
\begin{itemize}
\item Return 1 if \(|d| > q/4\) and 0 otherwise.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orge819bcd},fragile]{Toy Implementation}
 \begin{lstlisting}[language=python,numbers=none]
t = 10000
q = next_prime(2^10000, proof=False); q2 = q//2

# KeyGen
s = ZZ.random_element(0, q, "uniform")
a_ = [ZZ.random_element(0, q, "uniform") for _ in range(t)]
e_ = [ZZ.random_element(y=2^9850) for _ in range(t)]
c_ = [(a_[i]*s + e_[i]) % q for i in range(t)]

# Enc
m = 1
b_ = [ZZ.random_element(x=0,y=2) for _ in range(t)]
d0 = sum(b_[i]*a_[i] for i in range(t)) % q
d1 = (q2 * m + sum(b_[i]*c_[i] for i in range(t))) % q

# Dec
round(((d1 - d0*s) % q)/q2), m
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
(1, 1)
\end{verbatim}
\end{frame}
\begin{frame}[label={sec:org5216002}]{The Learning with Errors Problem (LWE)}
Given \((\vec{A},\vec{c})\) with \(\vec{c} \in \ZZ_q^{m}\), \(\vec{A} \in \ZZ_q^{m \times n}\), \(\vec{s} \in \ZZ_q^{n}\) and \alert{small \(\vec{e} \in \ZZ^{m}\)} is

\begin{align*}
\left(\begin{array}{c}
\\
\\
\\ 
\vec{c} \\
\\
\\
\\
\end{array} \right) = \left(
\begin{array}{ccc}
\leftarrow & n & \rightarrow \\
\\
\\ 
& \vec{A} & \\
\\
\\
\\
\end{array} \right) \times \left( \begin{array}{c}
\\
\vec{s} \\
\\
\end{array} \right) \alert{+ \left(
\begin{array}{c}
\\
\\
\\ 
\vec{e} \\
\\
\\
\\
\end{array} 
\right)}
\end{align*}

or \(\vec{c} \sample \mathcal{U}\left(\ZZ_q^{m}\right)\).
\end{frame}
\begin{frame}[label={sec:org8bbe089}]{The Learning with Errors Problem (LWE)}
\begin{definition}[LWE]
Let \(n,\,q\) be positive integers, \(\chi\) be a probability distribution on \(\ZZ\) and \(\vec{s}\) be a uniformly random vector in \(\ZZ_q^n\). We denote by \(\Ldis\) the probability distribution on \(\ZZ_q^n \times \ZZ_q\) obtained by choosing \(\vec{a} \in \ZZ_q^n\) uniformly at random, choosing \(e \in \ZZ\) according to \(\chi\) and considering it in \(\ZZ_q\), and returning  \((\vec{a},c) = (\vec{a},\langle \vec{a},\vec{s} \rangle+ e) \in \ZZ_q^n \times \ZZ_q\).

\begin{description}
\item[{Decision-LWE}] is the problem of deciding whether pairs \((\vec{a}, c) \in \ZZ_q^n \times \ZZ_q\) are sampled according to \(\Ldis\) or the uniform distribution on \(\ZZ_q^n \times \ZZ_q\).

\item[{Search-LWE}] is the problem of recovering \(\vec{s}\) from pairs \((\vec{a}, c)=(\vec{a},\langle  \vec{a},\vec{s}\rangle + e) \in \ZZ_q^n \times \ZZ_q\) sampled according to \(\Ldis\).
\end{description}
\label{def:Learning with Errors}
\end{definition}
\end{frame}
\begin{frame}[label={sec:orgba55989}]{A Fair Warning: Gaussian Distributions}
\begin{itemize}
\item In this lecture I am ignoring the specifics of the distribution \(\chi\). That is, the only slide with the phrase ``Discrete Gaussian distribution'' is this slide.

\item In practice, \alert{for encryption} the shape of the error does not seem to matter much.

\item Ignoring the distribution allows to brutally simply proof sketches: almost all technical difficulty in these proofs derives from arguing about two distributions being close.
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orge2279e6}]{Normal Form LWE}
\begin{columns}[t]
\begin{column}{0.5\columnwidth}
Consider
\begin{itemize}
\item \(\mat{A}_{i} \in \ZZ_q^{n \times n}\), \(\vec{s} \in \ZZ_q^n\), \(\vec{e}_{i} \sample \chi^n\),
\item \(\vec{c}_0 = \mat{A}_0 \cdot \vec{s} + \vec{e}_0\) and
\item \(\vec{c}_1 = \vec{A}_1 \cdot \vec{s} + \vec{e}_1\)
\item We have with high probability
\end{itemize}
\begin{align*}
\vec{c}' &= \vec{c}_1 - \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{c}_0\\
   &= \vec{A}_1\cdot \vec{s} + \vec{e}_1 -  \mat{A}_1 \cdot \mat{A}_0^{-1} (\mat{A}_0 \cdot \vec{s} + \vec{e}_0)\\
   &= \vec{A}_1\cdot \vec{s} + \vec{e}_1 -  \mat{A}_1 \cdot \vec{s} -  \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{e}_0\\
   &= - \mat{A}_1 \cdot \mat{A}_0^{-1} \cdot \vec{e}_0 + \vec{e}_1\\
   &= \mat{A}' \cdot \vec{e}_0 + \vec{e}_1
\end{align*}
\end{column}
\begin{column}{0.5\columnwidth}
\begin{itemize}
\item We might as well assume that our secret is also sampled from \(\chi\).

\item \fullcite{C:ACPS09}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org8fd5930}]{Dimension/Modulus Trade-Off}
Consider \(\vec{a}, \vec{s} \in \mathbb{Z}_{q}^{d}\) where \(\vec{s}\) is small, then
\[q^{d-1} \cdot \langle{\vec{a},\vec{s}}\rangle \approx \left(\sum_{i=0}^{d-1} q^{i} \cdot a_{i}\right) \cdot \left(\sum_{i=0}^{d-1} q^{d-i-1} \cdot s_{i}\right) \bmod q^{d} = \tilde{a} \cdot \tilde{s} \bmod q^{d}.\]
If there is an efficient algorithm solving the problem in \(\ZZ_{q^d}\), we can solve the problem in \(\mathbb{Z}_{q}^d\). 
\begin{example}[\(\ZZ_{q^{2}}\)]\label{sec:org44e6c16}
\[q\cdot \left(a_{0}\cdot s_{0} + a_{1} \cdot s_{1}\right) + a_{0} \cdot s_{1} + q^{2} \cdot a_{1} \cdot s_{0} \bmod q = \left(a_{0} + q\cdot a_{1}\right) \cdot (q\cdot s_{0} + s_{1})\]
\end{example}
\fullcite{STOC:BLPRS13}
\end{frame}
\section{LWE and Lattices}
\label{sec:orgc65585e}
\begin{frame}[label={sec:orgda37791},fragile]{Lattices}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{itemize}
\item A lattice is a discrete subgroup of \(\RR^d\)
\item It can be written as
\[
  \Lambda = \left\{\sum_{i=0}^{d-1} v_i \cdot \vec{b}_i \mid v_i \in \ZZ\right\}
  \]
for some basis vectors \(\vec{b}_i\).
\item We write \(\Lambda(\mat{B})\) for the lattices spanned by the columns of \(\mat{B}\).
\item A lattice is \(q\)-ary if it contains \(q\,\ZZ^{d}\), e.g. \(\{\vec{x} \in \ZZ^{d} \mid \vec{x} \cdot \vec{A} \equiv \vec{0}\}\) for some \(\vec{A} \in \ZZ^{d \times d'}\).
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}

  \begin{scope}[scale=.6]
    \coordinate (Origin)   at (0,0);
    \coordinate (XAxisMin) at (-5,0);
    \coordinate (XAxisMax) at (5,0);
    \coordinate (YAxisMin) at (0,-5);
    \coordinate (YAxisMax) at (0,5);
    \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
    \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
    %\draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);

    \begin{scope}
      \clip (-5,-5) rectangle (5,5); % Clips the picture...
      \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

      % setup the nodes
      \foreach \x in {-15,...,15}
      \foreach \y in {-15,...,15}
      {
        \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
      }
    \end{scope}
  \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:org4824d8a},fragile]{Shortest Vector Problem}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{definition}
Given a lattice basis \(\mat{B}\), find a shortest non-zero vector in \(\Lambda(\mat{B})\).
\end{definition}

\begin{itemize}
\item The most natural problem on lattices
\item We write \(\lambda_{1}(\Lambda)\) for the Euclidean norm of a shortest vector.
\item NP-hard to solve exactly
\item Cryptography relies on approximate variants without such a reduction
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}
  \begin{scope}[scale=.6]
    \coordinate (Origin)   at (0,0);
    \coordinate (XAxisMin) at (-5,0);
    \coordinate (XAxisMax) at (5,0);
    \coordinate (YAxisMin) at (0,-5);
    \coordinate (YAxisMax) at (0,5);
    \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
    \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
    \draw [thin, purple,->] (0,0) -- (-.5,.7);
    % \draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);

    \begin{scope}
      \clip (-5,-5) rectangle (5,5); % Clips the picture...
      \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

      % setup the nodes
      \foreach \x in {-15,...,15}
      \foreach \y in {-15,...,15}
      {
        \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
      }
    \end{scope}
    % our little node
    \node[shape=circle,fill=purple,scale=0.35] at (-.6,.8){};
  \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orga6032ba}]{Bounded Distance Decoding}
\begin{columns}
\begin{column}{0.5\columnwidth}
\begin{definition}
Given a lattice basis \(\mat{B}\), a vector \(\vec{t}\), and a parameter \(0 < \alpha\) such that the Euclidean distance \textnormal{dist}\((\vec{t},\vec{B}) < \alpha \cdot \lambda_{1}(\Lambda(\vec{B}))\), find the lattice vector \(\vec{v} \in \Lambda(\vec{B})\) which is closest to \(\vec{t}\).
\end{definition}

\begin{itemize}
\item When \(\alpha < 1/2\) unique decoding is guaranteed but for \(\alpha < 1\) we typically still expect unique decoding.
\item BDD is a special case of the Closest Vector Problem where there is no bound on the distance to the lattice.
\end{itemize}
\end{column}
\begin{column}{0.5\columnwidth}
\tikzset{external/export=true}
\begin{tikzpicture}

  \begin{scope}[scale=.6,shift={(12,0)}]
    \coordinate (Origin)   at (0,0);
    \coordinate (XAxisMin) at (-5,0);
    \coordinate (XAxisMax) at (5,0);
    \coordinate (YAxisMin) at (0,-5);
    \coordinate (YAxisMax) at (0,5);
    \draw [thin, black!40, <->] (XAxisMin) -- (XAxisMax);% Draw x axis
    \draw [thin, black!40,<->] (YAxisMin) -- (YAxisMax);% Draw y axis
    % \draw[style=help lines,dashed,black!20] (-5,-5) grid[step=1cm] (5,5);


    \begin{scope}
      \clip (-5,-5) rectangle (5,5); % Clips the picture...
      \pgftransformcm{1}{0.6}{0.7}{1}{\pgfpoint{0cm}{0cm}}

      % setup the nodes
      \foreach \x in {-15,...,15}
      \foreach \y in {-15,...,15}
      {
        \node[shape=circle,fill=black!45,scale=0.35] (\x-\y) at (2*\x,\y+3){};
      }
    \end{scope}

    % our little node
    \node[shape=circle,fill=purple!60,scale=0.4] at (2.5,3.4){};
    \node[shape=circle,fill=purple,scale=0.4] at (2.1,3){};
    \node[shape=circle,fill=none,draw=purple,scale=0.8] at (2.1,3){};

  \end{scope}

\end{tikzpicture}
\tikzset{external/export=false}

{\tiny Picture credit: David Wong }\par
\end{column}
\end{columns}
\end{frame}
\begin{frame}[label={sec:orgbe0428d}]{LWE \textbf{is} Bounded Distance Decoding (BDD) on Random \(q\)-ary Lattices}
Let
\[
\mat{L} =  \begin{pmatrix}
    q\mat{I} & \mat{A}\\
    0 & \mat{I}\\
  \end{pmatrix}
\]
We can reformulate the matrix form of the LWE equation \(\vec{A} \cdot \vec{s} + \vec{e} \equiv \vec{c} \bmod q\) as a linear system over the Integers as:
\[
  \mat{L} \cdot
  \begin{pmatrix}
    \vec{*}\\
    \vec{s}
  \end{pmatrix} +
  \begin{pmatrix}
    \vec{e}\\
    -\vec{s}
  \end{pmatrix}  
 = 
  \begin{pmatrix}
    q\mat{I} & -\mat{A}\\
    0 & \mat{I}\\
  \end{pmatrix} \cdot
  \begin{pmatrix}
    \vec{*}\\
    \vec{s}
  \end{pmatrix} +
  \begin{pmatrix}
    \vec{e}\\
    -\vec{s}
  \end{pmatrix}  
= 
  \begin{pmatrix}
    \vec{c}\\
    \vec{0}
  \end{pmatrix}
\]

The vector \((\vec{c}^T, \vec{0}^T)^T\) is close to the lattice \(\Lambda\left(\mat{L}\right)\) with offset \((\vec{e}^T, -\vec{s}^T)^T\).
\end{frame}
\begin{frame}[label={sec:orgbbee2c7}]{Is that a Good Choice?}
\begin{itemize}
\item Maybe BDD on random \(q\)-ary lattices is easier than BDD in general?
\item Maybe BDD is easier than SVP?
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgc9b00c7}]{Sketch: BDD on Random \(q\)-ary Lattices solves BDD on any Lattice}
\begin{itemize}
\item We are given some basis \(\mat{B} \in \ZZ^{d \times d}\) and some target \(\vec{t}\) s.t. \(\vec{t} = \mat{B}\cdot \vec{s} + \vec{e}\) with \(\vec{e}\) small
\item Pick some large \(q \geq 2^{2d}\)
\item Sample some \(\mat{U}\) (see below)
\item Set \(\mat{A} = \mat{U}\cdot \mat{B} \bmod q\) and consider \(\vec{c} = \mat{U} \cdot \vec{t} + \vec{e}'\) with \({\vec{e}'}\) small
\begin{align*}
\vec{c} &= \mat{U} \cdot \vec{t} + \vec{e}' = \mat{U} \cdot \left(\mat{B}\cdot \vec{s} + \vec{e} \right) + \vec{e}' = \mat{U} \cdot \mat{B}\cdot \vec{s} + \mat{U} \cdot \vec{e} + \vec{e}' = \mat{A} \cdot \vec{s} + \vec{e}''
\end{align*}
\item We can pick \(\mat{U}\)
\begin{itemize}
\item large enough to make \(\mat{A}\) uniform mod \(q\) and
\item small enough to make \(\mat{U} \cdot \vec{e} + \vec{e}'\) small and well distributed
\end{itemize}
using ``smoothing parameter'' arguments on \(\Lambda(\mat{B}^{-T})\)
\end{itemize}

\fullcite{Regev:2009:LLE}
\end{frame}
\begin{frame}[label={sec:org5f999f9}]{Sketch: Solving BDD on any Lattice implies solving GapSVP}
Say we want to decide if \(\lambda_{1}(\Lambda) \leq 1\) or \(\lambda_{1}(\Lambda) > \gamma\) and we have a BDD solver with \(\alpha = c\cdot \gamma\).

\begin{itemize}
\item Pick a random \(\vec{z} \in \Lambda\), add a small error \(\vec{e}\) of norm \(c\cdot \gamma\)
\item Run the BDD solver.
\item If it returns \(\vec{z}\) then output \(\lambda_{1}(\Lambda) > \gamma\), else output \(\lambda_{1}(\Lambda) \leq 1\).\footfullcite{STOC:Peikert09}

\item Regev showed: If you have a BDD solver you can find a short basis on a quantum computer \footfullcite{Regev:2009:LLE}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orgb2909af},fragile]{Concrete Hardness: Cryptanalysis}
 \begin{itemize}
\item This tells us random \(q\)-ary lattices are not a terrible choice
\item To establish how long it actually takes to solve LWE, we rely on cryptanalysis

\begin{lstlisting}[language=Python,numbers=none]
from estimator import *
schemes.Kyber512
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
LWEParameters(n=512, q=3329, Xs=D(σ=1.22), Xe=D(σ=1.22), m=512, tag='Kyber 512')
\end{verbatim}


\begin{lstlisting}[language=Python,numbers=none]
LWE.primal_usvp(schemes.Kyber512)
\end{lstlisting}

\phantomsection
\label{}
\begin{verbatim}
rop: ≈2^143.8, red: ≈2^143.8, δ: 1.003941, β: 406, d: 998, tag: usvp
\end{verbatim}
\end{itemize}

\begin{center}
\url{https://github.com/malb/lattice-estimator/}
\end{center}
\end{frame}
\section{Algebraic Variants}
\label{sec:org5085a03}

\begin{frame}[label={sec:org51ea4f0}]{LWE}
\[
\begin{pmatrix}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{pmatrix} = 
\begin{pmatrix}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} & a_{0,4} & a_{0,5} & a_{0,6} & a_{0,7}\\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7}\\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7}\\
a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7}\\
a_{4,0} & a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7}\\
a_{5,0} & a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7}\\
a_{6,0} & a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7}\\
a_{7,0} & a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7}\\
\end{pmatrix} \cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\begin{block}{Performance}
Storage: \(\mathcal{O}(n^{2})\); Computation \(\mathcal{O}(n^{2})\)
\end{block}
\end{frame}
\begin{frame}[label={sec:orgd274029}]{Ring-LWE/Polynomial-LWE}
\[
\begin{pmatrix}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ c_{7}\end{pmatrix} = 
\begin{pmatrix}
\alert{a_{0}} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} & -a_{2} & -a_{1} \\
\alert{a_{1}} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} & -a_{2} \\
\alert{a_{2}} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} & -a_{3} \\
\alert{a_{3}} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} & -a_{4} \\
\alert{a_{4}} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} & -a_{5} \\
\alert{a_{5}} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} & -a_{6} \\
\alert{a_{6}} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & -a_{7} \\
\alert{a_{7}} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0}
\end{pmatrix}\cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\end{frame}
\begin{frame}[label={sec:org26a1b6c}]{Ring-LWE/Polynomial-LWE}
\begin{align*}
\sum_{i=0}^{n-1} c_{i} \cdot X^{i} &= \left(\sum_{i=0}^{n-1} a_{i} \cdot X^{i}\right) \cdot \left(\sum_{i=0}^{n-1} s_{i} \cdot X^{i}\right) + \sum_{i=0}^{8} e_{i} \cdot X^{i} \bmod X^{n} +1\\
c(X) &= a(X) \cdot s(X) + e(X) \bmod \phi(X)
\end{align*}
\begin{block}{Performance (\(n\) is a power of two)}
Storage: \(\mathcal{O}(n)\); Computation \(\mathcal{O}(n \log n)\)
\end{block}
{\footnotesize \fullcite{AC:SSTX09,EC:LyuPeiReg10} \par}
\end{frame}
\begin{frame}[label={sec:org35c5e83}]{Module-LWE}
\[
\begin{pmatrix}c_{0,0} \\ c_{0,1} \\ c_{0,2} \\ c_{0,3} \\ c_{1,0} \\ c_{1,1} \\ c_{1,2} \\ c_{1,3}\end{pmatrix} = 
\left(\begin{array}{rrrr|rrrr}
\alert{a_{0,0}} & -a_{0,3} & -a_{0,2} & -a_{0,1} & \alert{a_{1,0}} & -a_{1,3} & -a_{1,2} & -a_{1,1} \\
\alert{a_{0,1}} &  a_{0,0} & -a_{0,3} & -a_{0,2} & \alert{a_{1,1}} &  a_{1,0} & -a_{1,3} & -a_{1,2} \\
\alert{a_{0,2}} &  a_{0,1} &  a_{0,0} & -a_{0,3} & \alert{a_{1,2}} &  a_{1,1} &  a_{1,0} & -a_{1,3} \\
\alert{a_{0,3}} &  a_{0,2} &  a_{0,1} &  a_{0,0} & \alert{a_{1,3}} &  a_{1,2} &  a_{1,1} &  a_{1,0} \\
\hline
\alert{a_{2,0}} & -a_{2,3} & -a_{2,2} & -a_{2,1} & \alert{a_{3,0}} & -a_{3,3} & -a_{3,2} & -a_{3,1} \\
\alert{a_{2,1}} &  a_{2,0} & -a_{2,3} & -a_{2,2} & \alert{a_{3,1}} &  a_{3,0} & -a_{3,3} & -a_{3,2} \\
\alert{a_{2,2}} &  a_{2,1} &  a_{2,0} & -a_{2,3} & \alert{a_{3,2}} &  a_{3,1} &  a_{3,0} & -a_{3,3} \\
\alert{a_{2,3}} &  a_{2,2} &  a_{2,1} &  a_{2,0} & \alert{a_{3,3}} &  a_{3,2} &  a_{3,1} &  a_{3,0} \\
\end{array}\right)\cdot
\begin{pmatrix}s_{0} \\ s_{1} \\ s_{2} \\ s_{3} \\ s_{4} \\ s_{5} \\ s_{6} \\ s_{7}\end{pmatrix} +
\begin{pmatrix}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{pmatrix}
\]
\end{frame}
\begin{frame}[label={sec:orge6fd3d6}]{Module-LWE}
\[
\begin{pmatrix} c_{0}(X) \\ c_{1}(X) \end{pmatrix} =
\begin{pmatrix} a_{0}(X) & a_{1}(X) \\ a_{2}(X) & a_{3}(X) \end{pmatrix} \cdot
\begin{pmatrix} s_{0}(X) \\ s_{1}(X) \end{pmatrix} +
\begin{pmatrix} e_{0}(X) \\ e_{1}(X) \end{pmatrix}
\]
\begin{block}{Performance (\(n\) is a power of two)}
Storage: \(\mathcal{O}(k^{2} \cdot n)\); Computation \(\mathcal{O}(k^{2} \cdot n \log n)\)
\end{block}
{\footnotesize \fullcite{Langlois:2015:WCA} \par}
\end{frame}
\section{LWE Encryption}
\label{sec:org2d7b14a}
\begin{frame}[label={sec:orgadb07b7}]{Convention}
\begin{itemize}
\item I am going to use the Ring-LWE formulation \[c_{i}(X) = a_{i}(X)\cdot s(X) + e_{i}(X)\]
Thus, each sample corresponds to ``\(n\) LWE samples''
\item I will suppress the ``\((X)\)'' in ``\(a(X)\)'' etc.
\item I will assume \(s\) is ``small'' and that the product of two ``small'' things is ``small''.
\item I will write \(\alert{e_{i}}\) to emphasise that \(e_{i}\) is small.
\end{itemize}
\begin{block}{TL;DR: I will write}
\[c_{i} = a_{i}\cdot \alert{s} + \alert{e_{i}}\]
\end{block}
\end{frame}
\begin{frame}[label={sec:orga34f891}]{DH to Ring-LWE Dictionary}
\begin{center}
\begin{tabular}{ll}
\toprule
DH Land & Ring-LWE Land\\
\midrule
\(g\) & \(a\)\\
\(g^x\) & \(a\cdot {s} + \alert{e}\)\\
 & \\
\(g^x \cdot g^y = g^{x+y}\) & \((a\cdot {s} + \alert{e_0}) + (a \cdot {t} + \alert{e_1}) = a \cdot {(s+t)} + \alert{e'}\)\\
 & \\
\((g^a)^b = (g^b)^a\) & \((a\cdot \alert{s} + \alert{e})\cdot \alert{t} = (a\cdot \alert{s} \cdot \alert{t} + \alert{e} \cdot \alert{t})\)\\
 & \(\approx a\cdot \alert{s} \cdot \alert{t} \approx (a\cdot \alert{t} + \alert{e})\cdot \alert{s}\)\\
 & \\
\((g, g^a, g^b, g^{ab})\) & \((a,\ a\cdot \alert{s} + \alert{e},\ a\cdot \alert{t} + \alert{d},\ a \cdot \alert{s} \cdot \alert{t} + \alert{e'})\)\\
\(\approx_c (g, g^a, g^b, u)\) & \(\approx_c (a,\ a\cdot \alert{s} + \alert{e},\ a\cdot \alert{t} + \alert{d},\ u)\)\\
\bottomrule
\end{tabular}

\end{center}
\end{frame}
\begin{frame}[label={sec:org10701d8}]{Regev's Encryption Scheme}
You have already seen it.

\begin{description}
\item[{KeyGen}] Publish \(c_{i} = a_{i} \cdot s + \alert{e_{i}}\) for \(i=0,\ldots, \lceil 2\, n \log q\rceil\)
\item[{Encrypt}] \[d_{0} = \sum \alert{b_{i}} \cdot a_{i},\quad  d_{1} = \left(\sum \alert{b_{i}} \cdot c_{i} \right) + \lfloor q/2 \rfloor \cdot m  \textnormal{ with } \alert{b_{i}} \in \bin, m \in \bin^{n}\]
\item[{Decrypt}] \begin{align*}
\left\lfloor \frac{2}{q} \cdot \left(d_{1} - d_{0} \cdot s\right) \right\rceil &= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i}} \cdot c_{i} \right) + \left\lfloor \frac{q}{2} \right\rfloor  \cdot m - \sum \alert{b_{i}} \cdot a_{i} \cdot s\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i}} \cdot (a_{i} \cdot s + \alert{e_{i}}) \right) + \frac{q}{2} \cdot m - \sum \alert{b_{i}} \cdot a_{i} \cdot s\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left(\left(\sum \alert{b_{i} \cdot e_{i}} \right) + \left\lfloor \frac{q}{2} \right\rfloor  \cdot m \right) \right\rceil = m
\end{align*}
\end{description}

The public key is indistinguishable from uniform by the LWE assumption and \(\sum b_{i} \cdot a_{i}\) is statistically close to uniformly random by the Leftover Hash Lemma (LHL).
\end{frame}
\begin{frame}[label={sec:orgea82128}]{ElGamal \& LPR10}
\textbf{ElGamal}

\begin{description}
\item[{KeyGen}] \(h = g^{x}\)
\item[{Encrypt}] \(d_{0},\ d_{1} = \left({g^{r},\  m \cdot h^{r}}\right)\) for some random \(r\)
\item[{Decrypt}] \(d_{1} / d_{0}^{x} = m \cdot (g^{x})^{r} / (g^{r})^{x} = m\)
\end{description}

\textbf{\cite{EC:LyuPeiReg10}}

\begin{description}
\item[{KeyGen}] \(c = a \cdot \alert{s} + \alert{e}\)
\item[{Encrypt}] \(d_{0}, \ d_{1} = \alert{v} \cdot a + \alert{e'},\ \alert{v} \cdot c + \alert{e''} +\left\lfloor \frac{q}{2} \right\rfloor  \cdot m\)
\item[{Decrypt}] \begin{align*}
\left\lfloor \frac{2}{q} \cdot \left(d_{1} - d_{0} \cdot \alert{s}\right) \right\rceil &= \left\lfloor \frac{2}{q} \cdot \left({\alert{v} \cdot (a \cdot \alert{s} + \alert{e}) + \alert{e''} + \left\lfloor \frac{q}{2} \right\rfloor \cdot m - \left(\alert{v} \cdot a + \alert{e'}\right) \cdot \alert{s}}\right) \right\rceil\\
&= \left\lfloor \frac{2}{q} \cdot \left({\alert{v} \cdot \alert{e} + \alert{e''} + \left\lfloor \frac{q}{2} \right\rfloor  \cdot m - \alert{e'} \cdot \alert{s}}\right) \right\rceil = m\\
\end{align*}
\end{description}
\end{frame}
\begin{frame}[label={sec:org9a31368}]{Proof Sketch}
\begin{description}
\item[{KeyGen}] \(c = a \cdot \alert{s} + \alert{e}\)
\begin{itemize}
\item The public key \((a,c)\) is indistinguishable from uniform \((u', u'')\) by the (Ring-)LWE assumption
\end{itemize}

\item[{Encrypt}] \(d_{0}, \ d_{1} = \alert{v} \cdot a + \alert{e'},\ \alert{v} \cdot c + \alert{e''} + q/2 \cdot m\)
\begin{itemize}
\item Then \(\alert{v} \cdot u' + \alert{e''},\ \alert{v} \cdot u'' + \alert{e''}\) is indistinguishable from uniform by the (Ring)-LWE assumption
\end{itemize}
\end{description}
\end{frame}
\begin{frame}[allowframebreaks]{Reconciliation}
Once you have ElGamal, recovering Diffie-Hellman is straight forward.

\begin{description}
\item[{Common}] \(a\)
\item[{Alice}] \(c_{0} = \alert{s} \cdot a + \alert{e_{0}}\)
\item[{Bob}] \(c_{1} = a \cdot \alert{t} + \alert{e_{1}}\)
\item[{Shared}] \[c_{0} \cdot \alert{t} = ( \alert{s} \cdot a + \alert{e_{0}})\cdot \alert{t} \approx \alert{s} \cdot a \cdot \alert{t} \approx \alert{s} \cdot (a \cdot \alert{t} + \alert{e_{1}}) = \alert{s} \cdot c_{1} \]
\end{description}

\framebreak

\[c_{0} \cdot \alert{t} = ( \alert{s} \cdot a + \alert{e_{0}})\cdot \alert{t} \approx \alert{s} \cdot a \cdot \alert{t} \approx \alert{s} \cdot (a \cdot \alert{t} + \alert{e_{1}}) = \alert{s} \cdot c_{1} \]

\begin{itemize}
\item The problem with this construction is that ``\(\approx\)'' \(\neq\) ``\(=\)''
\item Need to send a ``hint'' how to round correctly (2nd most significant bit) \footfullcite{EPRINT:DinXieLin12}
\item Cannot have efficient Non-interactive Key Exchange (NIKE) without new ideas\footfullcite{JC:GKRS22}
\end{itemize}
\end{frame}
\begin{frame}[label={sec:orge9db21d}]{Practical Performance (Zen4)}
\begin{columns}[t]
\begin{column}{0.5\columnwidth}
\textbf{Curve25519}

\begin{center}
\begin{tabular}{lr}
\toprule
Key generation & \(\approx\) 100,000 cycles\\
Key agreement & \(\approx\) 110,000 cycles\\
 & \\
Public key & 32 bytes\\
Key Share & 32 bytes\\
\bottomrule
\end{tabular}

\end{center}

{\footnotesize \url{https://bench.cr.yp.to/results-dh.html} \par}
\end{column}
\begin{column}{0.5\columnwidth}
\textbf{Kyber-768}

\begin{center}
\begin{tabular}{lr}
\toprule
Key generation & \(\approx\)  30,000 cycles\\
Encapsulation & \(\approx\)  40,000 cycles\\
Decapsulation & \(\approx\)  32,000 cycles\\
Ciphertext & 1,088 bytes\\
Public key & 1,184 bytes\\
\bottomrule
\end{tabular}

\end{center}

{\footnotesize \url{https://bench.cr.yp.to/results-kem.html} \par}
\end{column}
\end{columns}
\begin{block}{Interpretation}
\begin{itemize}
\item An Ethernet frame takes 1,500 bytes
\item Your laptop does about \(2\cdot 10^{9}\) cycles per second
\end{itemize}
\end{block}
\end{frame}
\begin{frame}[label={sec:orgf4e0799},standout]{Fin}
\begin{center}
\Large \alert{… noisy linear algebra mod \(q\)}
\end{center}

\IfFileExists{\jobname.tex}{\embedfile[afrelationship={/Source}]{\jobname.tex}}{}
\end{frame}
\begin{frame}[allowframebreaks]{References}
\printbibliography[heading=none]
\end{frame}
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